scispace - formally typeset
Search or ask a question
Institution

Toyota

CompanySafenwil, Switzerland
About: Toyota is a company organization based out in Safenwil, Switzerland. It is known for research contribution in the topics: Internal combustion engine & Exhaust gas. The organization has 40032 authors who have published 55003 publications receiving 735317 citations. The organization is also known as: Toyota Motor Corporation & Toyota Jidosha KK.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors consider the problem of distributed control of a platoon of vehicles with nonlinear dynamics and derive sufficient conditions that guarantee asymptotic stability and string stability.
Abstract: This paper considers the problem of distributed control of a platoon of vehicles with nonlinear dynamics. We present distributed receding horizon control algorithms and derive sufficient conditions that guarantee asymptotic stability, leader-follower string stability, and predecessor-follower string stability, following a step speed change in the platoon. Vehicles compute their own control in parallel, and receive communicated position and velocity error trajectories from their immediate predecessor. Leader-follower string stability requires additional communication from the lead car at each update, in the form of a position error trajectory. Predecessor-follower string stability, as we define it, implies leader-follower string stability. Predecessor-follower string stability requires stricter constraints in the local optimal control problems than the leader-follower formulation, but communication from the lead car is required only once at initialization. Provided an initially feasible solution can be found, subsequent feasibility of the algorithms are guaranteed at every update. The theory is generalized for nonlinear decoupled dynamics, and is thus applicable to fleets of planes, robots, or boats, in addition to cars. A simple seven-car simulation examines parametric tradeoffs that affect stability and string stability. Analysis on platoon formation, heterogeneity and size (length) is also considered, resulting in intuitive tradeoffs between lead car and following car control flexibility.

357 citations

Journal ArticleDOI
TL;DR: In this article, an isolated on-board vehicular battery charger that utilizes silicon carbide (SiC) power devices to achieve high density and high efficiency for application in electric vehicles (EVs) and plug-in hybrid EVs (PHEVs).
Abstract: This paper presents an isolated on-board vehicular battery charger that utilizes silicon carbide (SiC) power devices to achieve high density and high efficiency for application in electric vehicles (EVs) and plug-in hybrid EVs (PHEVs). The proposed level 2 charger has a two-stage architecture where the first stage is a bridgeless boost ac-dc converter and the second stage is a phase-shifted full-bridge isolated dc-dc converter. The operation of both topologies is presented and the specific advantages gained through the use of SiC power devices are discussed. The design of power stage components, the packaging of the multichip power module, and the system-level packaging is presented with a primary focus on system density and a secondary focus on system efficiency. In this work, a hardware prototype is developed and a peak system efficiency of 95% is measured while operating both power stages with a switching frequency of 200 kHz. A maximum output power of 6.1 kW results in a volumetric power density of 5.0 kW/L and a gravimetric power density of 3.8 kW/kg when considering the volume and mass of the system including a case.

355 citations

Journal ArticleDOI
Shinichi Matsumoto1
TL;DR: In this paper, a three-way NOx storage-reduction (NSR) catalyst was developed for automotive lean-burn engines, which can store NOx in an oxidizing atmosphere and then reduce stored NOx at stoichiometric or reducing conditions.

353 citations

Journal ArticleDOI
Rana Mohtadi1, Fuminori Mizuno1
TL;DR: The current challenges call for further dedicated research efforts encompassing fundamental understanding of the core components and how they interact with each other to offering new innovative solutions.
Abstract: “...each metal has a certain power, which is different from metal to metal, of setting the electric fluid in motion...” Count Alessandro Volta. Inspired by the first rechargeable magnesium battery prototype at the dawn of the 21st century, several research groups have embarked on a quest to realize its full potential. Despite the technical accomplishments made thus far, challenges, on the material level, hamper the realization of a practical rechargeable magnesium battery. These are marked by the absence of practical cathodes, appropriate electrolytes and extremely sluggish reaction kinetics. Over the past few years, an increased interest in this technology has resulted in new promising materials and innovative approaches aiming to overcome the existing hurdles. Nonetheless, the current challenges call for further dedicated research efforts encompassing fundamental understanding of the core components and how they interact with each other to offering new innovative solutions. In this review, we seek to highlight the most recent developments made and offer our perspectives on how to overcome some of the remaining challenges.

352 citations


Authors

Showing all 40045 results

NameH-indexPapersCitations
Derek R. Lovley16858295315
Edward H. Sargent14084480586
Shanhui Fan139129282487
Susumu Kitagawa12580969594
John B. Buse117521101807
Meilin Liu11782752603
Zhongfan Liu11574349364
Wolfram Burgard11172864856
Douglas R. MacFarlane11086454236
John J. Leonard10967646651
Ryoji Noyori10562747578
Stephen J. Pearton104191358669
Lajos Hanzo101204054380
Masashi Kawasaki9885647863
Andrzej Cichocki9795241471
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

89% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

87% related

Osaka University
185.6K papers, 5.1M citations

86% related

KAIST
77.6K papers, 1.8M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202232
2021942
20201,846
20192,981
20182,541