scispace - formally typeset
Search or ask a question
Institution

Toyota

CompanySafenwil, Switzerland
About: Toyota is a company organization based out in Safenwil, Switzerland. It is known for research contribution in the topics: Internal combustion engine & Exhaust gas. The organization has 40032 authors who have published 55003 publications receiving 735317 citations. The organization is also known as: Toyota Motor Corporation & Toyota Jidosha KK.


Papers
More filters
Proceedings ArticleDOI
01 Dec 2013
TL;DR: This work proposes a new method, called Hidden Factor Analysis (HFA), which captures the intuition above through a probabilistic model with two latent factors: an identity factor that is age-invariant and an age factor affected by the aging process.
Abstract: Age invariant face recognition has received increasing attention due to its great potential in real world applications. In spite of the great progress in face recognition techniques, reliably recognizing faces across ages remains a difficult task. The facial appearance of a person changes substantially over time, resulting in significant intra-class variations. Hence, the key to tackle this problem is to separate the variation caused by aging from the person-specific features that are stable. Specifically, we propose a new method, called Hidden Factor Analysis (HFA). This method captures the intuition above through a probabilistic model with two latent factors: an identity factor that is age-invariant and an age factor affected by the aging process. Then, the observed appearance can be modeled as a combination of the components generated based on these factors. We also develop a learning algorithm that jointly estimates the latent factors and the model parameters using an EM procedure. Extensive experiments on two well-known public domain face aging datasets: MORPH (the largest public face aging database) and FGNET, clearly show that the proposed method achieves notable improvement over state-of-the-art algorithms.

161 citations

Journal ArticleDOI
TL;DR: The particle size of mono-dispersed super-microporous silica spheres synthesized from tetramethoxysilane and n-decyltrimethylammonium bromide was successfully controlled by variation of the synthesis temperature, methanol ∶ water ratio in solvent and silica source in the range of 0.52 to 1.25 µm as mentioned in this paper.
Abstract: The particle size of mono-dispersed super-microporous silica spheres synthesized from tetramethoxysilane and n-decyltrimethylammonium bromide was successfully controlled by variation of the synthesis temperature, methanol ∶ water ratio in solvent and silica source in the range of 0.52 to 1.25 µm, while their mono-dispersion characteristics were retained. The adsorption properties of the samples were a specific surface area of 700–1000 m2 g−1 and a pore volume of 0.32–0.41 ml g−1, and were mainly affected by the synthesis temperature. The mono-dispersed super-microporous silica spheres obtained had a particle diameter equivalent to the wavelength of visible light, and thus their optical use, for example, as photonic crystals, is expected.

161 citations

Journal ArticleDOI
TL;DR: This work addresses the problem of designing intelligent in-tersections, where traffic lights and stop signs are removed, and cars negotiate the intersection through an interaction of centralized and distributed decision making.
Abstract: The automation of driving tasks is of increasing interest for highway traffic management. The emerging technologies of global positioning and intervehicular wireless communications, combined with in-vehicle computation and sensing capabilities, can potentially provide remarkable improvements in safety and efficiency. We address the problem of designing intelligent in-tersections, where traffic lights and stop signs are removed, and cars negotiate the intersection through an interaction of centralized and distributed decision making. Intelligent intersections are representative of complex hybrid systems that are increasingly of interest, where the challenge is to design tractable distributed algorithms that guarantee safety and provide good performance. Systems of automatically driven vehicles will need an under lying collision avoidance system with provable safety properties to be acceptable. This condition raises several challenges. We need to ensure perpetual collision avoidance so that cars do not get into future problematic positions to avoid an immediate collision. The architecture needs to allow distributed freedom of action to cars yet should guard against worst-case behavior of other cars to guarantee collision avoidance. The algorithms should be tractable both computationally and in information requirements and robust to uncertainties in sensing and communication. To address these challenges, we propose a hybrid architecture with an appropriate interplay between centralized coordination and distributed freedom of action. The approach is built around a core where each car has an infinite horizon contingency plan, which is updated at each sampling instant and distributed by the cars, in a computationally tractable manner. We also define a dynamically changing partial-order relation between cars, which specifies, for each car, a set of cars whose worst-case behaviors it should guard against. The architecture is hybrid, involving a centralized component that coordinates intersection traversals. We prove the safety and liveness of the overall scheme. The mathematical challenge of accurately quantifying performance remains as a difficult challenge; therefore, we conduct a simulation study that shows the benefits over stop signs and traffic lights. It is hoped that our effort can provide methodologies for the design of tractable solutions for complex distributed systems that require safety and liveness guarantees.

161 citations

Journal ArticleDOI
TL;DR: The “intelligent” catalyst system of Daihatsu shows in-built structural reversibility of the noble metal component of Pt-based three-way catalysts (TWCs), and the conventional approach to redispersion and reactivation is highly unsuitable on many counts for “on-board” redisp immersion and regeneration of TWCs.
Abstract: Supported precious metals, such as platinum (Pt), rhodium (Rh), and palladium (Pd), are used to facilitate many industrial catalytic processes. Pt in particular is found at the core of catalysts used throughout the petrochemical industry: from bifunctional catalysts (isomerization/dehydrogenation) used for refining of hydrocarbon fuel stocks, to three-way (CO and hydrocarbon oxidation/NOx reduction) conversions within car exhausts. In this latter, ubiquitous application— commercialized in the USA and Japan in 1977—Pt has always been a pivotal component in the abatement of harmful gas emissions from gasolineor diesel-driven engines. The ever-increasing appreciation of the damage that noxious gas emissions are doing to our environment and the finite availability of noble metals provide strong drivers for the continued study and optimization of the behavior of Pt-based three-way catalysts (TWCs). Central to technological progress in this area is a fundamental understanding of how these materials behave, which may allow us to stop them degrading or deactivating during operation. A longstanding problem, affecting many applications that use highly dispersed metal nanoparticles, is loss of active surface area in the metal components as a result of “sintering”. This is a particularly pernicious problem in applications in which catalysts have to experience high temperatures—in excess of 800 8C in the case of modern car catalysts. This deleterious process causes the particle size of the metal to increase massively—through either particle diffusion or agglomeration or through “ripening” processes. The result is that a large fraction of the active metal is effectively “hidden away” within the bulk of these larger particles where it cannot be used to affect the desired chemical conversions that occur on the particle surface. This central issue of exhaust catalyst deactivation has long been recognized in the hydrocarbon reforming and emission abatement industries. In the former industry, “oxidative redispersion” has been utilized to reverse the effects of sintering and regenerate spent Pt-based reforming catalysts. However, whereas other noble metal particles such as Pd or Rh can be effectively redispersed by gaseous oxygen at certain temperatures, this method is efficient for Pt catalysts only when Cl is present either in the catalyst formulation or as an adjunct added during the redispersion process: in the absence of Cl, redispersion in Pt/Al2O3 by oxygen is limited both to a narrow temperature window (of around 500 8C) and a low level of redispersion. 6] Further, a continuous oxidative treatment over time is required for this redispersion process. Exhaust gases exiting from gasoline engines change quickly and dramatically during operation. Temperatures can rise transiently to around 1000 8C, and the exhaust gas composition itself fluctuates quickly between oxidative and reductive compositions. Clearly, the conventional approach to redispersion and reactivation is highly unsuitable on many counts for “on-board” redispersion and regeneration of TWCs. Other regeneration phenomena have recently been shown in some related cases. The “intelligent” catalyst system of Daihatsu shows in-built structural reversibility of the noble metal component. In this case, it is the structure of the perovskite support that provides the foundation for this extremely elegant piece of applied catalyst design. The possibility of forming very large particles is intrinsically reduced and, under some circumstances, this technology has been successfully commercialized. However, this approach is very much dependent upon the structure of a particular and low surface area support material and is limited in this sense. [*] Dr. Y. Nagai, K. Dohmae, T. Tanabe, Dr. H. Shinjoh TOYOTA Central R&D Labs., Inc. Nagakute, Aichi 480-1192 (Japan) Fax: (+ 81)561-63-6150 E-mail: e1062@mosk.tytlabs.co.jp

160 citations

Journal ArticleDOI
TL;DR: BPy-PMO showed excellent ligand properties for heterogeneous Ir-catalyzed direct C-H borylation of arenes, resulting in superior activity, durability, and recyclability to the homogeneous analogous Ir catalyst.
Abstract: Synthesis of a solid chelating ligand for the formation of efficient heterogeneous catalysts is highly desired in the fields of organic transformation and solar energy conversion. Here, we report the surfactant-directed self-assembly of a novel periodic mesoporous organosilica (PMO) containing 2,2'-bipyridine (bpy) ligands within the framework (BPy-PMO) from a newly synthesized organosilane precursor [(i-PrO)3Si-C10H6N2-Si(Oi-Pr)3] without addition of any other silane precursors. BPy-PMO had a unique pore-wall structure in which bipyridine groups were densely and regularly packed and exposed on the surface. The high coordination ability to metals was also preserved. Various bipyridine-based metal complexes were prepared using BPy-PMO as a solid chelating ligand such as Ru(bpy)2(BPy-PMO), Ir(ppy)2(BPy-PMO) (ppy = 2-phenylpyridine), Ir(cod)(OMe)(BPy-PMO) (cod = 1,5-cyclooctadiene), Re(CO)3Cl(BPy-PMO), and Pd(OAc)2(BPy-PMO). BPy-PMO showed excellent ligand properties for heterogeneous Ir-catalyzed direct C-H borylation of arenes, resulting in superior activity, durability, and recyclability to the homogeneous analogous Ir catalyst. An efficient photocatalytic hydrogen evolution system was also constructed by integration of a Ru-complex as a photosensitizer and platinum as a catalyst on the pore surface of BPy-PMO without any electron relay molecules. These results demonstrate the great potential of BPy-PMO as a solid chelating ligand and a useful integration platform for construction of efficient molecular-based heterogeneous catalysis systems.

160 citations


Authors

Showing all 40045 results

NameH-indexPapersCitations
Derek R. Lovley16858295315
Edward H. Sargent14084480586
Shanhui Fan139129282487
Susumu Kitagawa12580969594
John B. Buse117521101807
Meilin Liu11782752603
Zhongfan Liu11574349364
Wolfram Burgard11172864856
Douglas R. MacFarlane11086454236
John J. Leonard10967646651
Ryoji Noyori10562747578
Stephen J. Pearton104191358669
Lajos Hanzo101204054380
Masashi Kawasaki9885647863
Andrzej Cichocki9795241471
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

89% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

87% related

Osaka University
185.6K papers, 5.1M citations

86% related

KAIST
77.6K papers, 1.8M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202232
2021942
20201,846
20192,981
20182,541