scispace - formally typeset
Search or ask a question

Showing papers by "Trinity College, Dublin published in 2013"



Journal ArticleDOI
TL;DR: In addition to the APOE locus (encoding apolipoprotein E), 19 loci reached genome-wide significance (P < 5 × 10−8) in the combined stage 1 and stage 2 analysis, of which 11 are newly associated with Alzheimer's disease.
Abstract: Eleven susceptibility loci for late-onset Alzheimer's disease (LOAD) were identified by previous studies; however, a large portion of the genetic risk for this disease remains unexplained. We conducted a large, two-stage meta-analysis of genome-wide association studies (GWAS) in individuals of European ancestry. In stage 1, we used genotyped and imputed data (7,055,881 SNPs) to perform meta-analysis on 4 previously published GWAS data sets consisting of 17,008 Alzheimer's disease cases and 37,154 controls. In stage 2, 11,632 SNPs were genotyped and tested for association in an independent set of 8,572 Alzheimer's disease cases and 11,312 controls. In addition to the APOE locus (encoding apolipoprotein E), 19 loci reached genome-wide significance (P < 5 × 10−8) in the combined stage 1 and stage 2 analysis, of which 11 are newly associated with Alzheimer's disease.

3,726 citations


Journal ArticleDOI
21 Jun 2013-Science
TL;DR: A number of methods have been developed to exfoliate layered materials in order to produce monolayer nanosheets, which are ideal for applications that require surface activity.
Abstract: Background Since at least 400 C.E., when the Mayans first used layered clays to make dyes, people have been harnessing the properties of layered materials. This gradually developed into scientific research, leading to the elucidation of the laminar structure of layered materials, detailed understanding of their properties, and eventually experiments to exfoliate or delaminate them into individual, atomically thin nanosheets. This culminated in the discovery of graphene, resulting in a new explosion of interest in two-dimensional materials. Layered materials consist of two-dimensional platelets weakly stacked to form three-dimensional structures. The archetypal example is graphite, which consists of stacked graphene monolayers. However, there are many others: from MoS 2 and layered clays to more exotic examples such as MoO 3 , GaTe, and Bi 2 Se 3 . These materials display a wide range of electronic, optical, mechanical, and electrochemical properties. Over the past decade, a number of methods have been developed to exfoliate layered materials in order to produce monolayer nanosheets. Such exfoliation creates extremely high-aspect-ratio nanosheets with enormous surface area, which are ideal for applications that require surface activity. More importantly, however, the two-dimensional confinement of electrons upon exfoliation leads to unprecedented optical and electrical properties. Liquid exfoliation of layered crystals allows the production of suspensions of two-dimensional nanosheets, which can be formed into a range of structures. (A) MoS 2 powder. (B) WS 2 dispersed in surfactant solution. (C) An exfoliated MoS 2 nanosheet. (D) A hybrid material consisting of WS 2 nanosheets embedded in a network of carbon nanotubes. Advances An important advance has been the discovery that layered crystals can be exfoliated in liquids. There are a number of methods to do this that involve oxidation, ion intercalation/exchange, or surface passivation by solvents. However, all result in liquid dispersions containing large quantities of nanosheets. This brings considerable advantages: Liquid exfoliation allows the formation of thin films and composites, is potentially scaleable, and may facilitate processing by using standard technologies such as reel-to-reel manufacturing. Although much work has focused on liquid exfoliation of graphene, such processes have also been demonstrated for a host of other materials, including MoS 2 and related structures, layered oxides, and clays. The resultant liquid dispersions have been formed into films, hybrids, and composites for a range of applications. Outlook There is little doubt that the main advances are in the future. Multifunctional composites based on metal and polymer matrices will be developed that will result in enhanced mechanical, electrical, and barrier properties. Applications in energy generation and storage will abound, with layered materials appearing as electrodes or active elements in devices such as displays, solar cells, and batteries. Particularly important will be the use of MoS 2 for water splitting and metal oxides as hydrogen evolution catalysts. In addition, two-dimensional materials will find important roles in printed electronics as dielectrics, optoelectronic devices, and transistors. To achieve this, much needs to be done. Production rates need to be increased dramatically, the degree of exfoliation improved, and methods to control nanosheet properties developed. The range of layered materials that can be exfoliated must be expanded, even as methods for chemical modification must be developed. Success in these areas will lead to a family of materials that will dominate nanomaterials science in the 21st century.

3,127 citations


Journal ArticleDOI
TL;DR: Crizotinib is superior to standard chemotherapy in patients with previously treated, advanced non-small-cell lung cancer with ALK rearrangement and greater improvement in global quality of life with crizotinIB than with chemotherapy.
Abstract: BACKGROUND: In single-group studies, chromosomal rearrangements of the anaplastic lymphoma kinase gene (ALK ) have been associated with marked clinical responses to crizotinib, an oral tyrosine kinase inhibitor targeting ALK. Whether crizotinib is superior to standard chemotherapy with respect to efficacy is unknown. METHODS: We conducted a phase 3, open-label trial comparing crizotinib with chemotherapy in 347 patients with locally advanced or metastatic ALK-positive lung cancer who had received one prior platinum-based regimen. Patients were randomly assigned to receive oral treatment with crizotinib (250 mg) twice daily or intravenous chemotherapy with either pemetrexed (500 mg per square meter of body-surface area) or docetaxel (75 mg per square meter) every 3 weeks. Patients in the chemotherapy group who had disease progression were permitted to cross over to crizotinib as part of a separate study. The primary end point was progression-free survival. RESULTS: The median progression-free survival was 7.7 months in the crizotinib group and 3.0 months in the chemotherapy group (hazard ratio for progression or death with crizotinib, 0.49; 95% confidence interval [CI], 0.37 to 0.64; P<0.001). The response rates were 65% (95% CI, 58 to 72) with crizotinib, as compared with 20% (95% CI, 14 to 26) with chemotherapy (P<0.001). An interim analysis of overall survival showed no significant improvement with crizotinib as compared with chemotherapy (hazard ratio for death in the crizotinib group, 1.02; 95% CI, 0.68 to 1.54; P=0.54). Common adverse events associated with crizotinib were visual disorder, gastrointestinal side effects, and elevated liver aminotransferase levels, whereas common adverse events with chemotherapy were fatigue, alopecia, and dyspnea. Patients reported greater reductions in symptoms of lung cancer and greater improvement in global quality of life with crizotinib than with chemotherapy. CONCLUSIONS: Crizotinib is superior to standard chemotherapy in patients with previously treated, advanced non-small-cell lung cancer with ALK rearrangement. (Funded by Pfizer; ClinicalTrials.gov number, NCT00932893.) Copyright © 2013 Massachusetts Medical Society.

3,074 citations


Journal ArticleDOI
TL;DR: The LUX-Lung 3 study as mentioned in this paper investigated the efficacy of chemotherapy compared with afatinib, a selective, orally bioavailable ErbB family blocker that irreversibly blocks signaling from epidermal growth factor receptor (EGFR/ErbB1), human epIDERmal growth factors receptor 2 (HER2/ERbB2), and ErbbB4 and has wide-spectrum preclinical activity against EGFR mutations.
Abstract: Purpose The LUX-Lung 3 study investigated the efficacy of chemotherapy compared with afatinib, a selective, orally bioavailable ErbB family blocker that irreversibly blocks signaling from epidermal growth factor receptor (EGFR/ErbB1), human epidermal growth factor receptor 2 (HER2/ErbB2), and ErbB4 and has wide-spectrum preclinical activity against EGFR mutations. A phase II study of afatinib in EGFR mutation–positive lung adenocarcinoma demonstrated high response rates and progression-free survival (PFS). Patients and Methods In this phase III study, eligible patients with stage IIIB/IV lung adenocarcinoma were screened for EGFR mutations. Mutation-positive patients were stratified by mutation type (exon 19 deletion, L858R, or other) and race (Asian or non-Asian) before two-to-one random assignment to 40 mg afatinib per day or up to six cycles of cisplatin plus pemetrexed chemotherapy at standard doses every 21 days. The primary end point was PFS by independent review. Secondary end points included tumor...

2,550 citations


Journal ArticleDOI
11 Apr 2013-Nature
TL;DR: The authors showed that inhibition of glycolysis with 2-deoxyglucose suppresses lipopolysaccharide-induced interleukin-1β but not tumour-necrosis factor-α in mouse macrophages.
Abstract: Macrophages activated by the Gram-negative bacterial product lipopolysaccharide switch their core metabolism from oxidative phosphorylation to glycolysis. Here we show that inhibition of glycolysis with 2-deoxyglucose suppresses lipopolysaccharide-induced interleukin-1β but not tumour-necrosis factor-α in mouse macrophages. A comprehensive metabolic map of lipopolysaccharide-activated macrophages shows upregulation of glycolytic and downregulation of mitochondrial genes, which correlates directly with the expression profiles of altered metabolites. Lipopolysaccharide strongly increases the levels of the tricarboxylic-acid cycle intermediate succinate. Glutamine-dependent anerplerosis is the principal source of succinate, although the 'GABA (γ-aminobutyric acid) shunt' pathway also has a role. Lipopolysaccharide-induced succinate stabilizes hypoxia-inducible factor-1α, an effect that is inhibited by 2-deoxyglucose, with interleukin-1β as an important target. Lipopolysaccharide also increases succinylation of several proteins. We therefore identify succinate as a metabolite in innate immune signalling, which enhances interleukin-1β production during inflammation.

2,504 citations


20 Sep 2013
TL;DR: Afatinib is associated with prolongation of PFS when compared with standard doublet chemotherapy in patients with advanced lung adenocarcinoma and EGFR mutations.
Abstract: Purpose The LUX-Lung 3 study investigated the efficacy of chemotherapy compared with afatinib, a selective, orally bioavailable ErbB family blocker that irreversibly blocks signaling from epidermal growth factor receptor (EGFR/ErbB1), human epidermal growth factor receptor 2 (HER2/ErbB2), and ErbB4 and has wide-spectrum preclinical activity against EGFR mutations. A phase II study of afatinib in EGFR mutation-positive lung adenocarcinoma demonstrated high response rates and progression-free survival (PFS). Patients and Methods In this phase III study, eligible patients with stage IIIB/IV lung adenocarcinoma were screened for EGFR mutations. Mutation-positive patients were stratified by mutation type (exon 19 deletion, L858R, or other) and race (Asian or non-Asian) before two-to-one random assignment to 40 mg afatinib per day or up to six cycles of cisplatin plus pemetrexed chemotherapy at standard doses every 21 days. The primary end point was PFS by independent review. Secondary end points included tumor response, overall survival, adverse events, and patient-reported outcomes (PROs). Results A total of 1,269 patients were screened, and 345 were randomly assigned to treatment. Median PFS was 11.1 months for afatinib and 6.9 months for chemotherapy (hazard ratio [HR], 0.58; 95% CI, 0.43 to 0.78; P = .001). Median PFS among those with exon 19 deletions and L858R EGFR mutations (n = 308) was 13.6 months for afatinib and 6.9 months for chemotherapy (HR, 0.47; 95% CI, 0.34 to 0.65; P = .001). The most common treatmentrelated adverse events were diarrhea, rash/acne, and stomatitis for afatinib and nausea, fatigue, and decreased appetite for chemotherapy. PROs favored afatinib, with better control of cough, dyspnea, and pain. Conclusion Afatinib is associated with prolongation of PFS when compared with standard doublet chemotherapy in patients with advanced lung adenocarcinoma and EGFR mutations.

2,380 citations


Journal ArticleDOI
S. Hong Lee1, Stephan Ripke2, Stephan Ripke3, Benjamin M. Neale2  +402 moreInstitutions (124)
TL;DR: Empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders.
Abstract: Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17-29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 ± 0.04 s.e.), moderate between schizophrenia and major depressive disorder (0.43 ± 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 ± 0.06 s.e.), and ADHD and major depressive disorder (0.32 ± 0.07 s.e.), low between schizophrenia and ASD (0.16 ± 0.06 s.e.) and non-significant for other pairs of disorders as well as between psychiatric disorders and the negative control of Crohn's disease. This empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders.

2,058 citations


Journal ArticleDOI
TL;DR: It is demonstrated, through a combination of state-of-the-art materials simulation techniques and X-ray photoemission experiments, that a type-II, staggered, band alignment of ~ 0.4 eV exists between anatase and rutile with anatase possessing the higher electron affinity, or work function.
Abstract: The most widely used oxide for photocatalytic applications owing to its low cost and high activity is TiO2. The discovery of the photolysis of water on the surface of TiO2 in 19721 launched four decades of intensive research into the underlying chemical and physical processes involved2, 3, 4, 5. Despite much collected evidence, a thoroughly convincing explanation of why mixed-phase samples of anatase and rutile outperform the individual polymorphs has remained elusive6. One long-standing controversy is the energetic alignment of the band edges of the rutile and anatase polymorphs of TiO2 (ref. 7). We demonstrate, through a combination of state-of-the-art materials simulation techniques and X-ray photoemission experiments, that a type-II, staggered, band alignment of ~ 0.4 eV exists between anatase and rutile with anatase possessing the higher electron affinity, or work function. Our results help to explain the robust separation of photoexcited charge carriers between the two phases and highlight a route to improved photocatalysts.

1,839 citations


Journal ArticleDOI
TL;DR: A current snapshot of high-throughput computational materials design is provided, and the challenges and opportunities that lie ahead are highlighted.
Abstract: High-throughput computational materials design is an emerging area of materials science. By combining advanced thermodynamic and electronic-structure methods with intelligent data mining and database construction, and exploiting the power of current supercomputer architectures, scientists generate, manage and analyse enormous data repositories for the discovery of novel materials. In this Review we provide a current snapshot of this rapidly evolving field, and highlight the challenges and opportunities that lie ahead.

1,568 citations


Journal ArticleDOI
TL;DR: Toll-like receptors have a central role in immunity — in this Timeline article, the landmark findings that gave rise to this important field of research are described.
Abstract: The discovery of Toll-like receptors (TLRs) was an important event for immunology research and was recognized as such with the awarding of the 2011 Nobel Prize in Physiology or Medicine to Jules Hoffmann and Bruce Beutler, who, together with Ralph Steinman, the third winner of the 2011 Nobel Prize and the person who discovered the dendritic cell, were pioneers in the field of innate immunity. TLRs have a central role in immunity - in this Timeline article, we describe the landmark findings that gave rise to this important field of research.

Journal ArticleDOI
TL;DR: It is proposed that species distribution modellers should get involved in real decision-making processes that will benefit from their technical input and have the potential to better bridge theory and practice, and contribute to improve both scientific knowledge and conservation outcomes.
Abstract: Species distribution models (SDMs) are increasingly proposed to support conservation decision making. However, evidence of SDMs supporting solutions for on-ground conservation problems is still scarce in the scientific literature. Here, we show that successful examples exist but are still largely hidden in the grey literature, and thus less accessible for analysis and learning. Furthermore, the decision framework within which SDMs are used is rarely made explicit. Using case studies from biological invasions, identification of critical habitats, reserve selection and translocation of endangered species, we propose that SDMs may be tailored to suit a range of decision-making contexts when used within a structured and transparent decision-making process. To construct appropriate SDMs to more effectively guide conservation actions, modellers need to better understand the decision process, and decision makers need to provide feedback to modellers regarding the actual use of SDMs to support conservation decisions. This could be facilitated by individuals or institutions playing the role of 'translators' between modellers and decision makers. We encourage species distribution modellers to get involved in real decision-making processes that will benefit from their technical input; this strategy has the potential to better bridge theory and practice, and contribute to improve both scientific knowledge and conservation outcomes.

Journal ArticleDOI
Stephan Ripke1, Stephan Ripke2, Colm O'Dushlaine1, Kimberly Chambert1, Jennifer L. Moran1, Anna K. Kähler3, Anna K. Kähler4, Anna K. Kähler5, Susanne Akterin3, Sarah E. Bergen3, Ann L. Collins5, James J. Crowley5, Menachem Fromer2, Menachem Fromer1, Menachem Fromer6, Yunjung Kim5, Sang Hong Lee7, Patrik K. E. Magnusson3, Nicholas E. Sanchez1, Eli A. Stahl6, Stephanie Williams5, Naomi R. Wray7, Kai Xia5, F Bettella8, Anders D. Børglum9, Anders D. Børglum10, Anders D. Børglum11, Brendan Bulik-Sullivan2, Paul Cormican12, Nicholas John Craddock13, Christiaan de Leeuw14, Christiaan de Leeuw15, Naser Durmishi, Michael Gill12, Vera Golimbet16, Marian L. Hamshere13, Peter Holmans13, David M. Hougaard17, Kenneth S. Kendler18, Kuang Fei Lin19, Derek W. Morris12, Ole Mors10, Ole Mors9, Preben Bo Mortensen11, Preben Bo Mortensen9, Benjamin M. Neale2, Benjamin M. Neale1, Francis A. O'Neill20, Michael John Owen13, MilicaPejovic Milovancevic21, Danielle Posthuma15, Danielle Posthuma22, John Powell19, Alexander Richards13, Brien P. Riley18, Douglas M. Ruderfer6, Dan Rujescu23, Dan Rujescu24, Engilbert Sigurdsson25, Teimuraz Silagadze26, August B. Smit15, Hreinn Stefansson8, Stacy Steinberg8, Jaana Suvisaari27, Sarah Tosato28, Matthijs Verhage15, James T.R. Walters13, Elvira Bramon19, Elvira Bramon29, Aiden Corvin12, Michael Conlon O'Donovan13, Kari Stefansson8, Edward M. Scolnick1, Shaun Purcell, Steve McCarroll2, Steve McCarroll1, Pamela Sklar6, Christina M. Hultman3, Patrick F. Sullivan3, Patrick F. Sullivan5 
TL;DR: The authors conducted a multi-stage genome-wide association study (GWAS) for schizophrenia and found that 8,300 independent, mostly common SNPs (95% credible interval of 6,300-10,200 SNPs) contribute to risk for schizophrenia.
Abstract: Schizophrenia is an idiopathic mental disorder with a heritable component and a substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases and 6,243 controls) followed by meta-Analysis with previous schizophrenia GWAS (8,832 cases and 12,067 controls) and finally by replication of SNPs in 168 genomic regions in independent samples (7,413 cases, 19,762 controls and 581 parent-offspring trios). We identified 22 loci associated at genome-wide significance; 13 of these are new, and 1 was previously implicated in bipolar disorder. Examination of candidate genes at these loci suggests the involvement of neuronal calcium signaling. We estimate that 8,300 independent, mostly common SNPs (95% credible interval of 6,300-10,200 SNPs) contribute to risk for schizophrenia and that these collectively account for at least 32% of the variance in liability. Common genetic variation has an important role in the etiology of schizophrenia, and larger studies will allow more detailed understanding of this disorder.

Journal ArticleDOI
TL;DR: 2D and 3D culture approaches are reviewed and the strengths and relevance of each method are considered in the context of anti-cancer drug screening.

Journal ArticleDOI
17 Jan 2013-Nature
TL;DR: Metabolic changes in cells that participate in inflammation, such as activated macrophages and T-helper 17 cells, include a shift towards enhanced glucose uptake, glycolysis and increased activity of the pentose phosphate pathway.
Abstract: Metabolic changes in cells that participate in inflammation, such as activated macrophages and T-helper 17 cells, include a shift towards enhanced glucose uptake, glycolysis and increased activity of the pentose phosphate pathway. Opposing roles in these changes for hypoxia-inducible factor 1α and AMP-activated protein kinase have been proposed. By contrast, anti-inflammatory cells, such as M2 macrophages, regulatory T cells and quiescent memory T cells, have lower glycolytic rates and higher levels of oxidative metabolism. Some anti-inflammatory agents might act by inducing, through activation of AMP-activated protein kinase, a state akin to pseudo-starvation. Altered metabolism may thus participate in the signal-directed programs that promote or inhibit inflammation.

Journal ArticleDOI
07 Oct 2013-ACS Nano
TL;DR: Employing high-yield production of layered materials by liquid-phase exfoliation, molybdenum disulfide (MoS2) dispersions with large populations of single and few layers were prepared and exhibited significant saturable absorption (SA) for the femtosecond pulses.
Abstract: Employing high-yield production of layered materials by liquid-phase exfoliation, molybdenum disulfide (MoS2) dispersions with large populations of single and few layers were prepared. Electron microscopy verified the high quality of the two-dimensional MoS2 nanostructures. Atomic force microscopy analysis revealed that ∼39% of the MoS2 flakes had thicknesses of less than 5 nm. Linewidth and frequency difference of the E12g and A1g Raman modes confirmed the effective reduction of flake thicknesses from the bulk MoS2 to the dispersions. Ultrafast nonlinear optical (NLO) properties were investigated using an open-aperture Z-scan technique. All experiments were performed using 100 fs pulses at 800 nm from a mode-locked Ti:sapphire laser. The MoS2 nanosheets exhibited significant saturable absorption (SA) for the femtosecond pulses, resulting in the third-order NLO susceptibility Imχ(3) ∼ 10–15 esu, figure of merit ∼10–15 esu cm, and free-carrier absorption cross section ∼10–17 cm2. Induced free carrier densi...

Journal ArticleDOI
TL;DR: This Account describes recent work to develop such a processing route inspired by previous theoretical and experimental studies on the solvent dispersion of carbon nanotubes, and extends this process to exfoliate other layered compounds such as BN and MoS(2).
Abstract: Due to its unprecedented physical properties, graphene has generated huge interest over the last 7 years. Graphene is generally fabricated in one of two ways: as very high quality sheets produced in limited quantities by micromechanical cleavage or vapor growth or as a rather defective, graphene-like material, graphene oxide, produced in large quantities. However, a growing number of applications would profit from the availability of a method to produce high-quality graphene in large quantities.This Account describes recent work to develop such a processing route inspired by previous theoretical and experimental studies on the solvent dispersion of carbon nanotubes. That work had shown that nanotubes could be effectively dispersed in solvents whose surface energy matched that of the nanotubes. We describe the application of the same approach to the exfoliation of graphite to give graphene in a range of solvents. When graphite powder is exposed to ultrasonication in the presence of a suitable solvent, the ...

Journal ArticleDOI
16 Aug 2013-Science
TL;DR: A central role is identified of lincRNA-Cox2 as a broad-acting regulatory component of the circuit that controls the inflammatory response in mice, which is central to antimicrobial defenses.
Abstract: An inducible program of inflammatory gene expression is central to antimicrobial defenses This response is controlled by a collaboration involving signal-dependent activation of transcription factors, transcriptional co-regulators, and chromatin-modifying factors We have identified a long noncoding RNA (lncRNA) that acts as a key regulator of this inflammatory response Pattern recognition receptors such as the Toll-like receptors induce the expression of numerous lncRNAs One of these, lincRNA-Cox2, mediates both the activation and repression of distinct classes of immune genes Transcriptional repression of target genes is dependent on interactions of lincRNA-Cox2 with heterogeneous nuclear ribonucleoprotein A/B and A2/B1 Collectively, these studies unveil a central role of lincRNA-Cox2 as a broad-acting regulatory component of the circuit that controls the inflammatory response

Journal ArticleDOI
TL;DR: A range of bio-based polymers are presented, focusing on general methods of production, properties, and commercial applications, and the major industry players who are bringing these materials to the market are discussed.
Abstract: This article reviews the recent trends, developments, and future applications of bio-based polymers produced from renewable resources. Bio-based polymers are attracting increased attention due to environmental concerns and the realization that global petroleum resources are finite. Bio-based polymers not only replace existing polymers in a number of applications but also provide new combinations of properties for new applications. A range of bio-based polymers are presented in this review, focusing on general methods of production, properties, and commercial applications. The review examines the technological and future challenges discussed in bringing these materials to a wide range of applications, together with potential solutions, as well as discusses the major industry players who are bringing these materials to the market.

Journal ArticleDOI
TL;DR: Type 2 innate lymphoid cells promote skin inflammation in mice and men, in part by producing IL-5 and IL-13 in response to IL-33.
Abstract: Type 2 innate lymphoid cells (ILC2s, nuocytes, NHC) require RORA and GATA3 for their development. We show that human ILC2s express skin homing receptors and infiltrate the skin after allergen challenge, where they produce the type 2 cytokines IL-5 and IL-13. Skin-derived ILC2s express the IL-33 receptor ST2, which is up-regulated during activation, and are enriched in lesional skin biopsies from atopic patients. Signaling via IL-33 induces type 2 cytokine and amphiregulin expression, and increases ILC2 migration. Furthermore, we demonstrate that E-cadherin ligation on human ILC2 dramatically inhibits IL-5 and IL-13 production. Interestingly, down-regulation of E-cadherin is characteristic of filaggrin insufficiency, a cardinal feature of atopic dermatitis (AD). ILC2 may contribute to increases in type 2 cytokine production in the absence of the suppressive E-cadherin ligation through this novel mechanism of barrier sensing. Using Rag1(-/-) and RORα-deficient mice, we confirm that ILC2s are present in mouse skin and promote AD-like inflammation. IL-25 and IL-33 are the predominant ILC2-inducing cytokines in this model. The presence of ILC2s in skin, and their production of type 2 cytokines in response to IL-33, identifies a role for ILC2s in the pathogenesis of cutaneous atopic disease.

Proceedings ArticleDOI
25 Aug 2013
TL;DR: The INTERSPEECH 2013 Computational Paralinguistics Challenge provides for the first time a unified test-bed for Social Signals such as laughter in speech and introduces conflict in group discussions as a new task and deals with autism and its manifestations in speech.
Abstract: The INTERSPEECH 2013 Computational Paralinguistics Challenge provides for the first time a unified test-bed for Social Signals such as laughter in speech. It further introduces conflict in group discussions as a new task and deals with autism and its manifestations in speech. Finally, emotion is revisited as task, albeit with a broader range of overall twelve enacted emotional states. In this paper, we describe these four Sub-Challenges, their conditions, baselines, and a new feature set by the openSMILE toolkit, provided to the participants. Index Terms: Computational Paralinguistics, Challenge, Social Signals, Conflict, Emotion, Autism

Journal Article
Smith1
TL;DR: The aim of this bi-monthly column is to highlight Cochrane Systematic Reviews of relevance to pregnancy and childbirth and to stimulate discussion on the relevance and implications of the review for practice.
Abstract: The aim of this bi-monthly column is to highlight Cochrane Systematic Reviews of relevance to pregnancy and childbirth and to stimulate discussion on the relevance and implications of the review for practice. The Cochrane Collaboration is an international organisation that prepares and maintains high quality systematic reviews to help people make well-informed decisions about healthcare and health policy. A systematic review tries to search for, appraise and bring together existing research to answer a specific research quesiton. The Cochrane Database of Systematic Reviews (CDSR) is published monthly online. Residents in countries with a national licence to the Cochrane Libray, including the U.K. and Ireland, can access the Cochrane Library online, free of charge through www.thecochranelibrary.com.

Journal ArticleDOI
23 May 2013-Immunity
TL;DR: Progress is described in understanding signaling mechanisms activated by DNA and the relevance of DNA sensing to pathogen responses and autoimmunity and new insights are highlighted into how and why the immune system responds to both pathogen and self DNA.

Journal ArticleDOI
TL;DR: It is concluded that the adsorption of proteins on the nanoparticle surface strongly reduces nanoparticle adhesion in comparison to what is observed for the bare material, and it is suggested that future nanoparticle-cell studies include an evaluation of the adhesion properties of the material to relevant membranes.
Abstract: The interactions between nanosized particles and living systems are commonly mediated by what adsorbs to the nanoparticle in the biological environment, its biomolecular corona, rather than the pristine surface. Here, we characterize the adhesion toward the cell membrane of nanoparticles of different material and size and study how this is modulated by the presence or absence of a corona on the nanoparticle surface. The results are corroborated with adsorption to simple model supported lipid bilayers using a quartz crystal microbalance. We conclude that the adsorption of proteins on the nanoparticle surface strongly reduces nanoparticle adhesion in comparison to what is observed for the bare material. Nanoparticle uptake is described as a two-step process, where the nanoparticles initially adhere to the cell membrane and subsequently are internalized by the cells via energy-dependent pathways. The lowered adhesion in the presence of proteins thereby causes a concomitant decrease in nanoparticle uptake eff...

Journal ArticleDOI
TL;DR: The relationship between genetic and environmental risk factors is examined, and a disease model in which ALS is considered to be the result of environmental risks and time acting on a pre-existing genetic load is proposed, followed by an automatic, self-perpetuating decline to death.
Abstract: Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive neurodegenerative disease of motor neurons, resulting in worsening weakness of voluntary muscles until death from respiratory failure occurs after about 3 years. Although great advances have been made in our understanding of the genetic causes of ALS, the contribution of environmental factors has been more difficult to assess. Large-scale studies of the clinical patterns of ALS, individual histories preceding the onset of ALS, and the rates of ALS in different populations and groups have led to improved patient care, but have not yet revealed a replicable, definitive environmental risk factor. In this Review, we outline what is currently known of the environmental and genetic epidemiology of ALS, describe the current state of the art with respect to the different types of ALS, and explore whether ALS should be considered a single disease or a syndrome. We examine the relationship between genetic and environmental risk factors, and propose a disease model in which ALS is considered to be the result of environmental risks and time acting on a pre-existing genetic load, followed by an automatic, self-perpetuating decline to death.

Journal ArticleDOI
01 Jan 2013-Glia
TL;DR: It is now apparent in multiple chronic disease states, and in ageing, that microglia are primed by prior pathology, or by genetic predisposition, to respond more vigorously to subsequent inflammatory stimulation, thus transforming an adaptive CNS inflammatory response to systemic inflammation, into one that has deleterious consequences for the individual.
Abstract: It is well accepted that CNS inflammation has a role in the progression of chronic neurodegenerative disease, although the mechanisms through which this occurs are still unclear. The inflammatory response during most chronic neurodegenerative disease is dominated by the microglia and mechanisms by which these cells contribute to neuronal damage and degeneration are the subject of intense study. More recently it has emerged that systemic inflammation has a significant role to play in the progression of these diseases. Well-described adaptive pathways exist to transduce systemic inflammatory signals to the brain, but activation of these pathways appears to be deleterious to the brain if the acute insult is sufficiently robust, as in severe sepsis, or sufficiently prolonged, as in repeated stimulation with robust doses of inflammogens such as lipopolysaccharide (LPS). Significantly, moderate doses of inflammogens produce new pathology in the brain and exacerbate or accelerate features of disease when superimposed upon existing pathology or in the context of genetic predisposition. It is now apparent in multiple chronic disease states, and in ageing, that microglia are primed by prior pathology, or by genetic predisposition, to respond more vigorously to subsequent inflammatory stimulation, thus transforming an adaptive CNS inflammatory response to systemic inflammation, into one that has deleterious consequences for the individual. In this review, the preclinical and clinical evidence supporting a significant role for systemic inflammation in chronic neurodegenerative diseases will be discussed. Mechanisms by which microglia might effect neuronal damage and dysfunction, as a consequence of systemic stimulation, will be highlighted.

Journal ArticleDOI
TL;DR: A snapshot of NTM species distribution demonstrates that the species distribution among NTM isolates from pulmonary specimens in the year 2008 differed by continent and differed by country within these continents.
Abstract: A significant knowledge gap exists concerning the geographical distribution of nontuberculous mycobacteria (NTM) isolation worldwide. To provide a snapshot of NTM species distribution, global partners in the NTM-Network European Trials Group (NET) framework (www.ntm-net.org), a branch of the Tuberculosis Network European Trials Group (TB-NET), provided identification results of the total number of patients in 2008 in whom NTM were isolated from pulmonary samples. From these data, we visualised the relative distribution of the different NTM found per continent and per country. We received species identification data for 20 182 patients, from 62 laboratories in 30 countries across six continents. 91 different NTM species were isolated. Mycobacterium avium complex (MAC) bacteria predominated in most countries, followed by M. gordonae and M. xenopi. Important differences in geographical distribution of MAC species as well as M. xenopi, M. kansasii and rapid-growing mycobacteria were observed. This snapshot demonstrates that the species distribution among NTM isolates from pulmonary specimens in the year 2008 differed by continent and differed by country within these continents. These differences in species distribution may partly determine the frequency and manifestations of pulmonary NTM disease in each geographical location.

Journal ArticleDOI
TL;DR: This paper proposes a compositional mixture of the food sources corrected for various metabolic factors based on the isometric log‐ratio transform, which can apply a range of time series and non‐parametric smoothing relationships.
Abstract: In this paper, we review recent advances in stable isotope mixing models (SIMMs) and place them into an overarching Bayesian statistical framework, which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixture. The most widely used application is quantifying the diet of organisms based on the food sources they have been observed to consume. At the centre of the multivariate statistical model we propose is a compositional mixture of the food sources corrected for various metabolic factors. The compositional component of our model is based on the isometric log-ratio transform. Through this transform, we can apply a range of time series and non-parametric smoothing relationships. We illustrate our models with three case studies based on real animal dietary behaviour.

Journal ArticleDOI
15 Aug 2013-Cell
TL;DR: Observations suggest that understanding and modulating RNP assembly or clearance may be effective approaches to developing therapies for degenerative diseases.

Journal ArticleDOI
TL;DR: The rich photophysical properties of the naphthalimides make them prime candidates as probes as the changes in spectroscopic properties such as absorption, dichroism, and fluorescence can all be used to monitor their binding to biomolecules.
Abstract: The development of functional 1,8-naphthalimide derivatives as DNA targeting, anticancer and cellular imaging agents is a fast growing area and has resulted in several such derivatives entering into clinical trials. This review gives an overview of the many discoveries and the progression of the use of 1,8-naphthalimides as such agents and their applications to date; focusing mainly on mono-, bis-naphthalimide based structures, and their various derivatives (e.g. amines, polyamine conjugates, heterocyclic, oligonucleotide and peptide based, and those based on metal complexes). Their cytotoxicity, mode of action and cell-selectivity are discussed and compared. The rich photophysical properties of the naphthalimides (which are highly dependent on the nature and the substitution pattern of the aryl ring) make them prime candidates as probes as the changes in spectroscopic properties such as absorption, dichroism, and fluorescence can all be used to monitor their binding to biomolecules. This also makes them useful species for monitoring their uptake and location within cells without the use of co-staining. The photochemical properties of the compounds have also been exploited, for example, for photocleavage of nucleic acids and for the destruction of tumour cells.