scispace - formally typeset
Search or ask a question
Institution

Tufts University

EducationMedford, Massachusetts, United States
About: Tufts University is a education organization based out in Medford, Massachusetts, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 32800 authors who have published 66881 publications receiving 3451152 citations. The organization is also known as: Tufts College & Universitatis Tuftensis.


Papers
More filters
Journal ArticleDOI
Jacy R Crosby1, Gina M. Peloso2, Gina M. Peloso3, Paul L. Auer4, David R. Crosslin5, Nathan O. Stitziel6, Leslie A. Lange7, Yingchang Lu8, Zheng-Zheng Tang7, He Zhang9, George Hindy10, Nicholas G. D. Masca11, Kathleen Stirrups12, Stavroula Kanoni12, Ron Do3, Ron Do2, Goo Jun9, Youna Hu9, Hyun Min Kang9, Chenyi Xue9, Anuj Goel13, Martin Farrall13, Stefano Duga14, Pier Angelica Merlini, Rosanna Asselta14, Domenico Girelli15, Oliviero Olivieri15, Nicola Martinelli15, Wu Yin16, Dermot F. Reilly16, Elizabeth K. Speliotes9, Caroline S. Fox17, Kristian Hveem18, Oddgeir L. Holmen19, Majid Nikpay20, Deborah N. Farlow2, Themistocles L. Assimes21, Nora Franceschini7, Jennifer G. Robinson22, Kari E. North7, Lisa W. Martin23, Mark A. DePristo2, Namrata Gupta2, Stefan A. Escher10, Jan-Håkan Jansson24, Natalie R. van Zuydam25, Colin N. A. Palmer25, Nicholas J. Wareham26, Werner Koch27, Thomas Meitinger27, Annette Peters, Wolfgang Lieb28, Raimund Erbel, Inke R. König29, Jochen Kruppa29, Franziska Degenhardt30, Omri Gottesman8, Erwin P. Bottinger8, Christopher J. O'Donnell17, Bruce M. Psaty31, Bruce M. Psaty5, Christie M. Ballantyne32, Christie M. Ballantyne33, Gonçalo R. Abecasis9, Jose M. Ordovas34, Jose M. Ordovas35, Olle Melander10, Hugh Watkins13, Marju Orho-Melander10, Diego Ardissino, Ruth J. F. Loos8, Ruth McPherson20, Cristen J. Willer9, Jeanette Erdmann29, Alistair S. Hall36, Nilesh J. Samani11, Panos Deloukas12, Panos Deloukas37, Panos Deloukas38, Heribert Schunkert27, James G. Wilson39, Charles Kooperberg40, Stephen S. Rich41, Russell P. Tracy42, Danyu Lin7, David Altshuler3, David Altshuler2, Stacey Gabriel2, Deborah A. Nickerson5, Gail P. Jarvik5, L. Adrienne Cupples26, L. Adrienne Cupples43, Alexander P. Reiner40, Alexander P. Reiner5, Eric Boerwinkle33, Sekar Kathiresan3, Sekar Kathiresan2 
TL;DR: Rare mutations that disrupt AP OC3 function were associated with lower levels of plasma triglycerides and APOC3, and carriers of these mutations were found to have a reduced risk of coronary heart disease.
Abstract: Background Plasma triglyceride levels are heritable and are correlated with the risk of coronary heart disease. Sequencing of the protein-coding regions of the human genome (the exome) has the potential to identify rare mutations that have a large effect on phenotype. Methods We sequenced the protein-coding regions of 18,666 genes in each of 3734 participants of European or African ancestry in the Exome Sequencing Project. We conducted tests to determine whether rare mutations in coding sequence, individually or in aggregate within a gene, were associated with plasma triglyceride levels. For mutations associated with triglyceride levels, we subsequently evaluated their association with the risk of coronary heart disease in 110,970 persons. Results An aggregate of rare mutations in the gene encoding apolipoprotein C3 (APOC3) was associated with lower plasma triglyceride levels. Among the four mutations that drove this result, three were loss-of-function mutations: a nonsense mutation (R19X) and two splice-site mutations (IVS2+1G→A and IVS3+1G→T). The fourth was a missense mutation (A43T). Approximately 1 in 150 persons in the study was a heterozygous carrier of at least one of these four mutations. Triglyceride levels in the carriers were 39% lower than levels in noncarriers (P<1×10 − 20 ), and circulating levels of APOC3 in carriers were 46% lower than levels in noncarriers (P = 8×10 − 10 ). The risk of coronary heart disease among 498 carriers of any rare APOC3 mutation was 40% lower than the risk among 110,472 noncarriers (odds ratio, 0.60; 95% confidence interval, 0.47 to 0.75; P = 4×10 − 6 ). Conclusions Rare mutations that disrupt APOC3 function were associated with lower levels of plasma triglycerides and APOC3. Carriers of these mutations were found to have a reduced risk of coronary heart disease. (Funded by the National Heart, Lung, and Blood Institute and others.)

877 citations

Journal ArticleDOI
TL;DR: The causes of death in the study were consistent with those expected in patients with septic shock, although there was a higher proportion of cardiovascular deaths and a lower incidence of deaths caused by multiple organ failure in the 546C88 group.
Abstract: Objective: To assess the safety and efficacy of the nitric oxide synthase inhibitor 546C88 in patients with septic shock. The predefined primary efficacy objective was survival at day 28. Design: Multiple-center, randomized, two-stage, double-blind, placebo-controlled, safety and efficacy study. Setting: A total of 124 intensive care units in Europe, North America, South America, South Africa, and Australasia. Patients: A total of 797 patients with septic shock diagnosed for <24 hrs. Interventions: Patients with septic shock were allocated to receive 546C88 or placebo (5% dextrose) for up to 7 days (stage 1) or 14 days (stage 2) in addition to conventional therapy. Study drug was initiated at 0.05 mL·kg 1 ·hr 1 (2.5 mg·kg 1 ·hr 1 546C88) and titrated up to a maximum rate of 0.4 mL·kg 1 ·hr 1 to maintain mean arterial pressure between 70 and 90 mm Hg while attempting to withdraw concurrent vasopressors. Measurements and Main Results: Hemodynamic variables, organ function data, microbiological data, concomitant therapy, and adverse event data were recorded at baseline, throughout treatment, and at follow-up. The primary end point was day-28 survival. The trial was stopped early after review by the independent data safety monitoring board. Day-28 mortality was 59% (259/439) in the 546C88 group and 49% (174/358) in the placebo group (p < .001). The overall incidence of adverse events was similar in both groups, although a higher proportion of the events was considered possibly attributable to study drug in the 546C88 group. Most of the events accounting for the disparity between the groups were associated with the cardiovascular system (e.g., decreased cardiac output, pulmonary hypertension, systemic arterial hypertension, heart failure). The causes of death in the study were consistent with those expected in patients with septic shock, although there was a higher proportion of cardiovascular deaths and a lower incidence of deaths caused by multiple organ failure in the 546C88 group. Conclusions: In this study, the nonselective nitric oxide synthase inhibitor 546C88 increased mortality in patients with septic shock. (Crit Care Med 2004; 32:21‐30)

876 citations

Journal ArticleDOI
26 Jul 1996-Science
TL;DR: Overexpression of human LGP96 in Chinese hamster ovary cells increased the activity of the selective lysosomal proteolytic pathway in vivo and in vitro.
Abstract: Multiple pathways of protein degradation operate within cells. A selective protein import pathway exists for the uptake and degradation of particular cytosolic proteins by lysosomes. Here, the lysosomal membrane glycoprotein LGP96 was identified as a receptor for the selective import and degradation of proteins within lysosomes. Specific substrates of this proteolytic pathway bound to the cytosolic tail of a 96-kilodalton lysosomal membrane protein in two different binding assays. Overexpression of human LGP96 in Chinese hamster ovary cells increased the activity of the selective lysosomal proteolytic pathway in vivo and in vitro.

873 citations

Journal ArticleDOI
06 Mar 2009-PLOS ONE
TL;DR: This paper follows the same procedures described previously to develop an updated list of SDRMs that are likely to be useful for ongoing and future studies of transmitted drug resistance and concludes that the updated SDRM list has 93 mutations.
Abstract: Programs that monitor local, national, and regional levels of transmitted HIV-1 drug resistance inform treatment guidelines and provide feedback on the success of HIV-1 treatment and prevention programs. To accurately compare transmitted drug resistance rates across geographic regions and times, the World Health Organization has recommended the adoption of a consensus genotypic definition of transmitted HIV-1 drug resistance. In January 2007, we outlined criteria for developing a list of mutations for drug-resistance surveillance and compiled a list of 80 RT and protease mutations meeting these criteria (surveillance drug resistance mutations; SDRMs). Since January 2007, several new drugs have been approved and several new drug-resistance mutations have been identified. In this paper, we follow the same procedures described previously to develop an updated list of SDRMs that are likely to be useful for ongoing and future studies of transmitted drug resistance. The updated SDRM list has 93 mutations including 34 NRTI-resistance mutations at 15 RT positions, 19 NNRTI-resistance mutations at 10 RT positions, and 40 PI-resistance mutations at 18 protease positions.

870 citations

Journal ArticleDOI
TL;DR: New technology for optical coherence tomography (OCT) that enables ultrahigh-resolution, non-invasive in vivo ophthalmologic imaging of retinal and corneal morphology with an axial resolution of 2–3 μm is presented, which is, to the authors' knowledge, the highest resolution for in vivo OCT imaging achieved to date.
Abstract: Here we present new technology for optical coherence tomography (OCT) that enables ultrahigh-resolution, non-invasive in vivo ophthalmologic imaging of retinal and corneal morphology with an axial resolution of 2–3 μm. This resolution represents a significant advance in performance over the 10–15-μm resolution currently available in ophthalmic OCT systems and, to our knowledge, is the highest resolution for in vivo ophthalmologic imaging achieved to date. This resolution enables in vivo visualization of intraretinal and intra-corneal architectural morphology that had previously only been possible with histopathology. We demonstrate image processing and segmentation techniques for automatic identification and quantification of retinal morphology. Ultrahigh-resolution OCT promises to enhance early diagnosis and objective measurement for tracking progression of ocular diseases, as well as monitoring the efficacy of therapy. Current clinical practice emphasizes the development of techniques to diagnose disease in its early stages, when treatment is most effective and irreversible damage can be prevented or delayed. In ophthalmology, the precise visualization of pathology is especially critical for the diagnosis and staging of ocular diseases. Therefore, new imaging techniques have been developed to augment conventional fundoscopy and slit-lamp biomicroscopy. Ultrasonography is routinely used in ophthalmology, but requires physical contact with the eye and has axial resolutions of approximately 200 μm (ref. 1). High-frequency ultrasound enables approximately 20 μm axial resolutions, but due to limited penetration, only anterior eye structures can be imaged2. Confocal microscopy has been used to image the cornea with sub-micrometer transverse resolution3. Scanning laser ophthalmoscopy enables en face fundus imaging with micron-scale transverse and approximately 300-μm axial resolution4,5. None of these techniques, however, permits high-resolution, cross-sectional imaging of the retina in vivo. Recently, optical coherence tomography (OCT) has emerged as a promising new technique for high-resolution, cross-sectional imaging6,7. OCT is attractive for ophthalmic imaging because image resolutions are 1–2 orders of magnitude higher than conventional ultrasound, imaging can be performed non-invasively and in real time, and quantitative morphometric information can be obtained. OCT is somewhat analogous to ultrasound imaging except that it uses light instead of sound. High-resolution, cross-sectional images are obtained by measuring the echo time delay of reflected infrared light using a technique known as low coherence interferometry8,9. OCT imaging was first demonstrated in the human retina in vitro6 and in vivo10,11. Recently, it has been extended to a wide range of other non-transparent tissues to function as a type of optical biopsy12–15. To date, however, the most important clinical applications of OCT have been retinal imaging in ophthalmic diagnosis7,16–22. Current ophthalmic OCT systems have 10–15-μm axial resolution and provide more detailed structural information than any other non-invasive ophthalmic imaging technique6,7,10,11. However, the resolution of current clinical ophthalmic OCT technology is significantly below what is theoretically possible. Improving the resolution of OCT ophthalmic imaging would enable structural imaging of retinal pathology at an intraretinal level, as well as improve the accuracy of morphometric quantification. The axial resolution of conventional ophthalmic OCT systems is limited to 10–15 μm by the bandwidth of light sources used for imaging. Short-pulse, solid-state lasers can generate ultrabroad bandwidth, low-coherence light13. A broadband Cr:Forsterite laser operating in the near infrared (1,300 nm) has permitted cellular-level OCT imaging in developmental biology specimens with 6-μm axial resolution13. For ophthalmic imaging, light sources operating at 800 nm are necessary to avoid absorption in the ocular media. Recently, a state-of-the-art broadband Ti:Al2O3 laser has been developed for ultrahigh (~1 μm) axial resolution, spectroscopic OCT imaging in non-transparent tissue at 800-nm center wavelength23,24. We describe here ultrahigh-resolution ophthalmic OCT based on this state-of-the-art optical technology and demonstrate its potential to provide enhanced structural and quantitative information for ophthalmologic imaging.

868 citations


Authors

Showing all 33110 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Frank B. Hu2501675253464
Ralph B. D'Agostino2261287229636
John Q. Trojanowski2261467213948
Peter Libby211932182724
David Baltimore203876162955
Eric B. Rimm196988147119
Lewis C. Cantley196748169037
Bernard Rosner1901162147661
Charles A. Dinarello1901058139668
William B. Kannel188533175659
Scott M. Grundy187841231821
John P. A. Ioannidis1851311193612
David H. Weinberg183700171424
Joel Schwartz1831149109985
Network Information
Related Institutions (5)
University of Pennsylvania
257.6K papers, 14.1M citations

98% related

Columbia University
224K papers, 12.8M citations

96% related

Harvard University
530.3K papers, 38.1M citations

96% related

Yale University
220.6K papers, 12.8M citations

96% related

Johns Hopkins University
249.2K papers, 14M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023100
2022467
20213,334
20203,065
20192,806
20182,618