scispace - formally typeset
Search or ask a question
Institution

United Nations Environment Programme

OtherNairobi, Kenya
About: United Nations Environment Programme is a other organization based out in Nairobi, Kenya. It is known for research contribution in the topics: Sustainable development & Population. The organization has 956 authors who have published 1549 publications receiving 82145 citations. The organization is also known as: United Nations Environment Program & U.N.E.P..


Papers
More filters
Journal ArticleDOI
28 May 2010-Science
TL;DR: Most indicators of the state of biodiversity showed declines, with no significant recent reductions in rate, whereas indicators of pressures on biodiversity showed increases, indicating that the Convention on Biological Diversity’s 2010 targets have not been met.
Abstract: In 2002, world leaders committed, through the Convention on Biological Diversity, to achieve a significant reduction in the rate of biodiversity loss by 2010. We compiled 31 indicators to report on progress toward this target. Most indicators of the state of biodiversity (covering species' population trends, extinction risk, habitat extent and condition, and community composition) showed declines, with no significant recent reductions in rate, whereas indicators of pressures on biodiversity (including resource consumption, invasive alien species, nitrogen pollution, overexploitation, and climate change impacts) showed increases. Despite some local successes and increasing responses (including extent and biodiversity coverage of protected areas, sustainable forest management, policy responses to invasive alien species, and biodiversity-related aid), the rate of biodiversity loss does not appear to be slowing.

3,993 citations

Journal ArticleDOI
TL;DR: In this article, the authors propose case studies on various topics to identify management practices, technologies and policies that promote the positive and mitigate the negative impacts of agriculture on biodiversity, and enhance productivity and the capacity to sustain livelihoods.
Abstract: Background The programme of work on agricultural biodiversity, adopted by the Conference of Parties in decision V/5, makes provision for case studies on various topics to identify management practices, technologies and policies that promote the positive and mitigate the negative impacts of agriculture on biodiversity, and enhance productivity and the capacity to sustain livelihoods. More specifically, activity 2.1 of the Programme of Work calls for a series of case studies, in a range of environments and production systems, and in each region: (a) To identify key goods and services provided by agricultural biodiversity, needs for the conservation and sustainable use of components of this biological diversity in agricultural ecosystems, and threats to such diversity;

2,990 citations

Journal ArticleDOI
02 Apr 2015-Nature
TL;DR: A terrestrial assemblage database of unprecedented geographic and taxonomic coverage is analysed to quantify local biodiversity responses to land use and related changes and shows that in the worst-affected habitats, pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%.
Abstract: Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.

2,532 citations

Journal ArticleDOI
TL;DR: In this article, the status and distribution of global mangroves using recently available Global Land Survey (GLS) data and the Landsat archive was mapped using hybrid supervised and unsupervised digital image classification techniques.
Abstract: Aim Our scientific understanding of the extent and distribution of mangrove forests of the world is inadequate. The available global mangrove databases, compiled using disparate geospatial data sources and national statistics, need to be improved.Here,we mapped the status and distributions of global mangroves using recently available Global Land Survey (GLS) data and the Landsat archive. Methods We interpreted approximately 1000 Landsat scenes using hybrid supervised and unsupervised digital image classification techniques. Each image was normalized for variation in solar angle and earth‐sun distance by converting the digital number values to the top-of-the-atmosphere reflectance. Ground truth data and existing maps and databases were used to select training samples and also for iterative labelling. Results were validated using existing GIS data and the published literature to map ‘true mangroves’. Results The total area of mangroves in the year 2000 was 137,760 km 2 in 118 countries and territories in the tropical and subtropical regions of the world. Approximately 75% of world’s mangroves are found in just 15 countries, and only 6.9% are protected under the existing protected areas network (IUCN I-IV). Our study confirms earlier findings that the biogeographic distribution of mangroves is generallyconfinedtothetropicalandsubtropicalregionsandthelargestpercentage of mangroves is found between 5° N and 5° S latitude. Main conclusions We report that the remaining area of mangrove forest in the world is less than previously thought. Our estimate is 12.3% smaller than the most recent estimate by the Food and Agriculture Organization (FAO) of the United Nations.We present the most comprehensive, globally consistent and highest resolution (30 m) global mangrove database ever created.We developed and used better mapping techniques and data sources and mapped mangroves with better spatial and thematic details than previous studies.

2,261 citations

Journal ArticleDOI
TL;DR: It is shown that the higher taxonomic classification of species follows a consistent and predictable pattern from which the total number of species in a taxonomic group can be estimated, and when applied to all domains of life, it predicts ∼8.7 million eukaryotic species globally.
Abstract: The diversity of life is one of the most striking aspects of our planet; hence knowing how many species inhabit Earth is among the most fundamental questions in science. Yet the answer to this question remains enigmatic, as efforts to sample the world's biodiversity to date have been limited and thus have precluded direct quantification of global species richness, and because indirect estimates rely on assumptions that have proven highly controversial. Here we show that the higher taxonomic classification of species (i.e., the assignment of species to phylum, class, order, family, and genus) follows a consistent and predictable pattern from which the total number of species in a taxonomic group can be estimated. This approach was validated against well-known taxa, and when applied to all domains of life, it predicts ∼8.7 million (±1.3 million SE) eukaryotic species globally, of which ∼2.2 million (±0.18 million SE) are marine. In spite of 250 years of taxonomic classification and over 1.2 million species already catalogued in a central database, our results suggest that some 86% of existing species on Earth and 91% of species in the ocean still await description. Renewed interest in further exploration and taxonomy is required if this significant gap in our knowledge of life on Earth is to be closed.

2,147 citations


Authors

Showing all 960 results

NameH-indexPapersCitations
Michael R. Hoffmann10950063474
Adrian C. Newton7445321814
Stuart H. M. Butchart7224526585
Timothy P. Johnson6131213734
Simon Ferrier6016526966
Michel M. Verstraete5816511911
Neil D. Burgess5615516237
Mohamed H. Ahmed5459613882
Mark Spalding5310322357
Martin Hoelzle501667942
Joseph Alcamo5015418424
Linxiu Zhang462737863
Drew W. Purves45877900
Valerie Kapos4410813750
Matt Walpole428013649
Network Information
Related Institutions (5)
International Institute for Applied Systems Analysis
5K papers, 280.4K citations

83% related

Potsdam Institute for Climate Impact Research
5K papers, 367K citations

81% related

Helmholtz Centre for Environmental Research - UFZ
9.8K papers, 394.3K citations

81% related

Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

81% related

University of Natural Resources and Life Sciences, Vienna
13.2K papers, 390.5K citations

79% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202211
2021113
202079
201971
201874
201793