Institution
United States Department of Energy
Government•Washington D.C., District of Columbia, United States•
About: United States Department of Energy is a(n) government organization based out in Washington D.C., District of Columbia, United States. It is known for research contribution in the topic(s): Coal & Catalysis. The organization has 13656 authors who have published 14177 publication(s) receiving 556962 citation(s). The organization is also known as: DOE & Department of Energy.
Topics: Coal, Catalysis, Combustion, Oxide, Hydrogen
Papers published on a yearly basis
Papers
More filters
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.
21,023 citations
TL;DR: The Human Microbiome Project Consortium reported the first results of their analysis of microbial communities from distinct, clinically relevant body habitats in a human cohort; the insights into the microbial communities of a healthy population lay foundations for future exploration of the epidemiology, ecology and translational applications of the human microbiome as discussed by the authors.
Abstract: The Human Microbiome Project Consortium reports the first results of their analysis of microbial communities from distinct, clinically relevant body habitats in a human cohort; the insights into the microbial communities of a healthy population lay foundations for future exploration of the epidemiology, ecology and translational applications of the human microbiome.
6,805 citations
TL;DR: The results of an international collaboration to produce a high-quality draft sequence of the mouse genome are reported and an initial comparative analysis of the Mouse and human genomes is presented, describing some of the insights that can be gleaned from the two sequences.
Abstract: The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.
6,369 citations
TL;DR: This Perspective provides a snapshot of the current energy landscape and discusses several research and development opportunities and pathways that could lead to a prosperous, sustainable and secure energy future for the world.
Abstract: Access to clean, affordable and reliable energy has been a cornerstone of the world's increasing prosperity and economic growth since the beginning of the industrial revolution. Our use of energy in the twenty–first century must also be sustainable. Solar and water–based energy generation, and engineering of microbes to produce biofuels are a few examples of the alternatives. This Perspective puts these opportunities into a larger context by relating them to a number of aspects in the transportation and electricity generation sectors. It also provides a snapshot of the current energy landscape and discusses several research and development opportunities and pathways that could lead to a prosperous, sustainable and secure energy future for the world.
5,397 citations
University of Illinois at Urbana–Champaign1, Joint Institute for the Study of the Atmosphere and Ocean2, Cooperative Institute for Research in Environmental Sciences3, University of Leeds4, University of Oslo5, United States Environmental Protection Agency6, University of Michigan7, Pacific Northwest National Laboratory8, German Aerospace Center9, United States Department of Energy10, Max Planck Society11, University of Tokyo12, National Oceanic and Atmospheric Administration13, Forschungszentrum Jülich14, Norwegian Meteorological Institute15, Indian Institute of Technology Bombay16, China Meteorological Administration17, Peking University18, Met Office19, Desert Research Institute20, Clarkson University21, Stanford University22, European Centre for Medium-Range Weather Forecasts23, International Institute of Minnesota24, Goddard Institute for Space Studies25, Yale University26, University of Washington27, University of California, Irvine28
TL;DR: In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Abstract: Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.
3,741 citations
Authors
Showing all 13656 results
Name | H-index | Papers | Citations |
---|---|---|---|
Martin White | 196 | 2038 | 232387 |
Paul G. Richardson | 183 | 1533 | 155912 |
Jie Zhang | 178 | 4857 | 221720 |
Krzysztof Matyjaszewski | 169 | 1431 | 128585 |
Yang Gao | 168 | 2047 | 146301 |
David Eisenberg | 156 | 697 | 112460 |
Marvin Johnson | 149 | 1827 | 119520 |
Carlos Escobar | 148 | 1184 | 95346 |
Joshua A. Frieman | 144 | 609 | 109562 |
Paul Jackson | 141 | 1372 | 93464 |
Greg Landsberg | 141 | 1709 | 109814 |
J. Conway | 140 | 1692 | 105213 |
Pushpalatha C Bhat | 139 | 1587 | 105044 |
Julian Borrill | 139 | 387 | 102906 |
Cecilia Elena Gerber | 138 | 1727 | 106984 |