scispace - formally typeset
Search or ask a question
Institution

United States Department of Energy

GovernmentWashington D.C., District of Columbia, United States
About: United States Department of Energy is a government organization based out in Washington D.C., District of Columbia, United States. It is known for research contribution in the topics: Catalysis & Coal. The organization has 13656 authors who have published 14177 publications receiving 556962 citations. The organization is also known as: DOE & Department of Energy.
Topics: Catalysis, Coal, Combustion, Adsorption, Hydrogen


Papers
More filters
Journal ArticleDOI
18 Oct 2010-Analyst
TL;DR: Modern methods of graphene production and functionalization are surveyed with an emphasis on the development of chemical sensors and fuel cell electrodes with brief comparisons to state-of-the-art carbon nanotube-based systems.
Abstract: Graphene, an atomically thin layer of sp2 hybridized carbon, has emerged as a promising new nanomaterial for a variety of exciting applications including chemical sensors and catalyst supports. In this article, we survey modern methods of graphene production and functionalization with an emphasis on the development of chemical sensors and fuel cell electrodes with brief comparisons to state-of-the-art carbon nanotube-based systems.

157 citations

Journal ArticleDOI
TL;DR: The aerodynamic and acoustic performance of an anechoic wind tunnel test section with walls made from thin Kevlar cloth have been measured and analyzed as discussed by the authors, where the cloth contains the bulk of the flow but permits the transmission of sound with little loss.

157 citations

Journal ArticleDOI
30 Apr 1997-Langmuir
TL;DR: In this paper, the ability of n-alkanethiolates chemisorbed at Au(111) to function as boundary lubricants at microscopic length scales as probed by scanning force microscopy (SFM) was explored.
Abstract: This paper explores the ability of n-alkanethiolates chemisorbed at Au(111) to function as boundary lubricants at microscopic length scales as probed by scanning force microscopy (SFM). Through an examination of the influence of alkyl chain length, we show that the macroscopic structure of this system, as developed from insights into the chain-packing density via infrared reflection spectroscopy, greatly influences the observed friction and wear. That is, the longer chain monolayers exhibit a markedly lower friction and a reduced propensity to wear than the shorter chain monolayers, a situation that reflects the more extensive cohesive interactions between chains. From the combined weight of these findings, we examine the frictional process within the context of an activation mechanism that involves pressure and shear activation volumes. The ability of longer chain alkanethiolate monolayers to lubricate features that arise from changes in substrate topography is also presented, and the resulting mechanist...

157 citations

Journal ArticleDOI
TL;DR: In this paper, a steady state PQ-diagram for a variable speed wind turbine equipped with a Doubly Fed Induction Generator was derived, and the authors concluded that the limiting factor regarding reactive power production will typically be the rotor current limit and that the limit for reactive power absorption will be the stator current limit.
Abstract: The aim of the work is to derive a steady state PQ-diagram for a variable speed wind turbine equipped with a Doubly Fed Induction Generator. Firstly, the dependency between optimal rotor speed and wind speed is presented. Secondly, the limitations in reactive power production, caused by the rotor current, the rotor voltage and the stator current are derived. Thirdly, the influence of switching from Δ to Y coupling of the stator is investigated. Finally, a complete PQ diagram for a wind turbine is plotted. It is concluded that the limiting factor regarding reactive power production will typically be the rotor current limit, and that the limit for reactive power absorption will be the stator current limit. Further, it is concluded that the rotor voltage will only have a limiting effect at high positive and negative slips, but near the limitation, the reactive power capability is very sensitive to small changes in the slip. Copyright © 2007 John Wiley & Sons, Ltd.

157 citations


Authors

Showing all 13660 results

NameH-indexPapersCitations
Martin White1962038232387
Paul G. Richardson1831533155912
Jie Zhang1784857221720
Krzysztof Matyjaszewski1691431128585
Yang Gao1682047146301
David Eisenberg156697112460
Marvin Johnson1491827119520
Carlos Escobar148118495346
Joshua A. Frieman144609109562
Paul Jackson141137293464
Greg Landsberg1411709109814
J. Conway1401692105213
Pushpalatha C Bhat1391587105044
Julian Borrill139387102906
Cecilia Elena Gerber1381727106984
Network Information
Related Institutions (5)
Lawrence Berkeley National Laboratory
66.5K papers, 4.1M citations

92% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

90% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

89% related

ETH Zurich
122.4K papers, 5.1M citations

88% related

Texas A&M University
164.3K papers, 5.7M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202223
2021633
2020601
2019654
2018598