scispace - formally typeset
Search or ask a question
Institution

United States Department of Energy

GovernmentWashington D.C., District of Columbia, United States
About: United States Department of Energy is a government organization based out in Washington D.C., District of Columbia, United States. It is known for research contribution in the topics: Coal & Catalysis. The organization has 13656 authors who have published 14177 publications receiving 556962 citations. The organization is also known as: DOE & Department of Energy.
Topics: Coal, Catalysis, Combustion, Oxide, Hydrogen


Papers
More filters
Journal ArticleDOI
22 Jul 2015-eLife
TL;DR: These data augment public data sets 10-fold, provide first viral sequences for 13 new bacterial phyla including ecologically abundant phyla, and help taxonomically identify 7–38% of ‘unknown’ sequence space in viromes, illustrating the value of mining viral signal from microbial genomes.
Abstract: Viruses are infectious particles that can only multiply inside the cells of microbes and other organisms. Little is known about the genetic differences between virus particles (so-called ‘genetic diversity’), especially compared to what we know about the diversity of bacteria, archaea, and other single-celled microbes. This lack of knowledge hampers our understanding of the role viruses play in the evolution of microbial communities and their associated ecosystems. Studying the genetics of the viruses in these communities is challenging. There is no single ‘marker’ gene that can be used to identify all viruses in environmental samples. Also, many of the fragments of viral genomes that have been identified have not yet been linked to their host microbes. Many viruses integrate their genome into the DNA of their host cell, and there are computational tools available that exploit this ability to identify viruses and link them to their host. However, other viruses can live and multiply inside cells without integrating their genome into the host's DNA. Earlier in 2015, researchers developed a new computational tool called VirSorter that can predict virus genome sequences within the DNA extracted from microbes. VirSorter identifies viral genome sequences based on the presence of ‘hallmark’ genes that encode for components found in many virus particles, together with a reference database of genomes from many viruses. Now, Roux et al.—including some of the researchers from the earlier work—use VirSorter to predict viral DNA from publicly available bacteria and archaea genome data. The study identifies over 12,000 viral genomes and links them to their microbial hosts. These data increase the number of viral genome sequences that are publically available by a factor of ten and identify the first viruses associated with 13 new types of bacteria, which include species that are abundant in particular environments. It is possible for several different viruses to infect a single cell at the same time. Some viruses are known to be able to exchange DNA, and if this happens frequently in other viruses, it could have a big impact on how viruses evolve. Roux et al.'s findings suggest that although it is common for several different viruses to infect the same cell, it is relatively rare for these viruses to exchange genetic material. Roux et al.'s findings demonstrate the value of searching publicly available microbial genome data for fragments of viral genomes. These new viral genomes will serve as a useful resource for researchers as they explore the communities of viruses and microbes in natural environments, the human body and in industrial processes.

378 citations

Journal ArticleDOI
TL;DR: The volume available in a given sorbent at a specified adsorption energy (density of states) and how this density of states can be used to assess the effectiveness of a sorbent material for hydrogen storage are calculated.
Abstract: Molecular simulations using standard force fields have been carried out to model the adsorption of various light gases on a number of different metal organic framework-type materials. The results have been compared with the available experimental data to test the validity of the model potentials. We observe good agreement between simulations and experiments for a number of different cases and very poor agreement in other cases. Possible reasons for the discrepancy in simulated and measured isotherms are discussed. We predict hydrogen adsorption isotherms at 77 and 298 K in a number of different metal organic framework materials. The importance of quantum diffraction effects and framework charges on the adsorption of hydrogen at 77 K is discussed. Our calculations indicate that at room temperature none of the materials that we have tested is able to meet the requirements for on-board hydrogen storage for fuel cell vehicles. We have calculated the volume available in a given sorbent at a specified adsorption energy (density of states). We discuss how this density of states can be used to assess the effectiveness of a sorbent material for hydrogen storage.

377 citations

Journal ArticleDOI
TL;DR: This review underlines not only the strategies developed to suppress the coffee-ring effect but also sheds light on approaches to arrive at novel processes and materials.

376 citations

Journal ArticleDOI
TL;DR: Although the origin(s) of the extra genes and the supernumerary chromosomes is not known, the gene expansion and its large genome size are consistent with this species' diverse range of habitats.
Abstract: The ascomycetous fungus Nectria haematococca, (asexual name Fusarium solani), is a member of a group of .50 species known as the ‘‘Fusarium solani species complex’’. Members of this complex have diverse biological properties including the ability to cause disease on .100 genera of plants and opportunistic infections in humans. The current research analyzed the most extensively studied member of this complex, N. haematococca mating population VI (MPVI). Several genes controlling the ability of individual isolates of this species to colonize specific habitats are located on supernumerary chromosomes. Optical mapping revealed that the sequenced isolate has 17 chromosomes ranging from 530 kb to 6.52 Mb and that the physical size of the genome, 54.43 Mb, and the number of predicted genes, 15,707, are among the largest reported for ascomycetes. Two classes of genes have contributed to gene expansion: specific genes that are not found in other fungi including its closest sequenced relative, Fusarium graminearum; and genes that commonly occur as single copies in other fungi but are present as multiple copies in N. haematococca MPVI. Some of these additional genes appear to have resulted from gene duplication events, while others may have been acquired through horizontal gene transfer. The supernumerary nature of three chromosomes, 14, 15, and 17, was confirmed by their absence in pulsed field gel electrophoresis experiments of some isolates and by demonstrating that these isolates lacked chromosome-specific sequences found on the ends of these chromosomes. These supernumerary chromosomes contain more repeat sequences, are enriched in unique and duplicated genes, and have a lower G+C content in comparison to the other chromosomes. Although the origin(s) of the extra genes and the supernumerary chromosomes is not known, the gene expansion and its large genome size are consistent with this species’ diverse range of habitats. Furthermore, the presence of unique genes on supernumerary chromosomes might account for individual isolates having different environmental niches.

376 citations

Journal ArticleDOI
21 Mar 2003-Science
TL;DR: It is shown that Collembola, a wingless group traditionally considered as basal to all insects, appears instead to constitute a separate evolutionary lineage that branched much earlier than the separation of many crustaceans and insects and independently adapted to life on land.
Abstract: Recent morphological and molecular evidence has changed interpretations of arthropod phylogeny and evolution. Here we compare complete mitochondrial genomes to show that Collembola, a wingless group traditionally considered as basal to all insects, appears instead to constitute a separate evolutionary lineage that branched much earlier than the separation of many crustaceans and insects and independently adapted to life on land. Therefore, the taxon Hexapoda, as commonly defined to include all six-legged arthropods, is not monophyletic.

375 citations


Authors

Showing all 13660 results

NameH-indexPapersCitations
Martin White1962038232387
Paul G. Richardson1831533155912
Jie Zhang1784857221720
Krzysztof Matyjaszewski1691431128585
Yang Gao1682047146301
David Eisenberg156697112460
Marvin Johnson1491827119520
Carlos Escobar148118495346
Joshua A. Frieman144609109562
Paul Jackson141137293464
Greg Landsberg1411709109814
J. Conway1401692105213
Pushpalatha C Bhat1391587105044
Julian Borrill139387102906
Cecilia Elena Gerber1381727106984
Network Information
Related Institutions (5)
Lawrence Berkeley National Laboratory
66.5K papers, 4.1M citations

92% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

90% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

89% related

ETH Zurich
122.4K papers, 5.1M citations

88% related

Texas A&M University
164.3K papers, 5.7M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202223
2021633
2020601
2019654
2018598