scispace - formally typeset
Search or ask a question
Institution

United States Department of Energy

GovernmentWashington D.C., District of Columbia, United States
About: United States Department of Energy is a government organization based out in Washington D.C., District of Columbia, United States. It is known for research contribution in the topics: Coal & Catalysis. The organization has 13656 authors who have published 14177 publications receiving 556962 citations. The organization is also known as: DOE & Department of Energy.
Topics: Coal, Catalysis, Combustion, Oxide, Hydrogen


Papers
More filters
Journal ArticleDOI
TL;DR: In the Gulf of Mexico (GoM), the gas hydrate Joint Industry Project (the JIP) provided an initial confirmation of the occurrence of gas hydrates below the GoM seafloor as mentioned in this paper.

266 citations

Journal ArticleDOI
TL;DR: In this article, a simulation model that reproduces the performance of parabolic trough solar thermal power plants with a thermal storage system is presented to facilitate the prediction of the electricity output of these plants during the various stages of their planning, design, construction and operation.

265 citations

Journal ArticleDOI
TL;DR: The improved high quality peach genome assembly (Peach v2.0) represents a valuable tool for the analysis of the genetic diversity, domestication, and as a vehicle for genetic improvement of peach and related Prunus species.
Abstract: The availability of the peach genome sequence has fostered relevant research in peach and related Prunus species enabling the identification of genes underlying important horticultural traits as well as the development of advanced tools for genetic and genomic analyses. The first release of the peach genome (Peach v1.0) represented a high-quality WGS (Whole Genome Shotgun) chromosome-scale assembly with high contiguity (contig L50 214.2 kb), large portions of mapped sequences (96%) and high base accuracy (99.96%). The aim of this work was to improve the quality of the first assembly by increasing the portion of mapped and oriented sequences, correcting misassemblies and improving the contiguity and base accuracy using high-throughput linkage mapping and deep resequencing approaches. Four linkage maps with 3,576 molecular markers were used to improve the portion of mapped and oriented sequences (from 96.0% and 85.6% of Peach v1.0 to 99.2% and 98.2% of v2.0, respectively) and enabled a more detailed identification of discernible misassemblies (10.4 Mb in total). The deep resequencing approach fixed 859 homozygous SNPs (Single Nucleotide Polymorphisms) and 1347 homozygous indels. Moreover, the assembled NGS contigs enabled the closing of 212 gaps with an improvement in the contig L50 of 19.2%. The improved high quality peach genome assembly (Peach v2.0) represents a valuable tool for the analysis of the genetic diversity, domestication, and as a vehicle for genetic improvement of peach and related Prunus species. Moreover, the important phylogenetic position of peach and the absence of recent whole genome duplication (WGD) events make peach a pivotal species for comparative genomics studies aiming at elucidating plant speciation and diversification processes.

264 citations

Journal ArticleDOI
TL;DR: The discovery of a genome-wide set of noncoding sequences highly enriched in human heart enhancers that is likely to facilitate downstream studies of the role of enhancers in development and pathological conditions of the heart is supported.
Abstract: Development and function of the human heart depend on the dynamic control of tissue-specific gene expression by distant-acting transcriptional enhancers. To generate an accurate genome-wide map of human heart enhancers, we used an epigenomic enhancer discovery approach and identified ∼6,200 candidate enhancer sequences directly from fetal and adult human heart tissue. Consistent with their predicted function, these elements were markedly enriched near genes implicated in heart development, function and disease. To further validate their in vivo enhancer activity, we tested 65 of these human sequences in a transgenic mouse enhancer assay and observed that 43 (66%) drove reproducible reporter gene expression in the heart. These results support the discovery of a genome-wide set of noncoding sequences highly enriched in human heart enhancers that is likely to facilitate downstream studies of the role of enhancers in development and pathological conditions of the heart.

263 citations

Journal ArticleDOI
TL;DR: Two conceptual strategies for encoding information into self-assembling building blocks highlight opportunities and challenges in the realization of programmable colloidal nanostructures.
Abstract: Two conceptual strategies for encoding information into self-assembling building blocks highlight opportunities and challenges in the realization of programmable colloidal nanostructures.

263 citations


Authors

Showing all 13660 results

NameH-indexPapersCitations
Martin White1962038232387
Paul G. Richardson1831533155912
Jie Zhang1784857221720
Krzysztof Matyjaszewski1691431128585
Yang Gao1682047146301
David Eisenberg156697112460
Marvin Johnson1491827119520
Carlos Escobar148118495346
Joshua A. Frieman144609109562
Paul Jackson141137293464
Greg Landsberg1411709109814
J. Conway1401692105213
Pushpalatha C Bhat1391587105044
Julian Borrill139387102906
Cecilia Elena Gerber1381727106984
Network Information
Related Institutions (5)
Lawrence Berkeley National Laboratory
66.5K papers, 4.1M citations

92% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

90% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

89% related

ETH Zurich
122.4K papers, 5.1M citations

88% related

Texas A&M University
164.3K papers, 5.7M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202223
2021633
2020601
2019654
2018598