scispace - formally typeset
Search or ask a question

Showing papers by "United States Environmental Protection Agency published in 2013"


Journal ArticleDOI
TL;DR: In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Abstract: Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

4,591 citations


Journal ArticleDOI
TL;DR: The functionalized magnetically retrievable catalysts or nanocatalysts that are increasingly being used in catalysis, green chemistry and pharmaceutically significant reactions are summarized in this review.
Abstract: Surface functionalization of nano-magnetic nanoparticles is a well-designed way to bridge the gap between heterogeneous and homogeneous catalysis. The introduction of magnetic nanoparticles (MNPs) in a variety of solid matrices allows the combination of well-known procedures for catalyst heterogenization with techniques for magnetic separation. Magnetite is a well-known material, also known as ferrite (Fe3O4), and can be used as a versatile support for functionalization of metals, organocatalysts, N-heterocyclic carbenes, and chiral catalysts. It is used as a support for important homogeneous catalytically active metals such as Pd, Pt, Cu, Ni, Co, Ir, etc. to obtain stable and magnetically recyclable heterogeneous catalysts. Homogeneous organocatalysts can be successfully decorated with linkers/ligands on the surface of magnetite or alternatively the organocatalysts can be directly immobilized on the surface of magnetite. The functionalized magnetically retrievable catalysts or nanocatalysts that are increasingly being used in catalysis, green chemistry and pharmaceutically significant reactions are summarized in this review.

1,057 citations


Journal ArticleDOI
TL;DR: These studies suggest relative high acute toxicity of ZnO NPs (in the low mg/l levels) to environmental species, although this toxicity is highly dependent on test species, physico-chemical properties of the material, and test methods.

766 citations


Journal ArticleDOI
TL;DR: In this article, the authors show that most wetlands, when compared to methane emissions, do not have 25 times more CO2 sequestration than methane emissions; therefore, to many landscape managers and non specialists, most wetlands would be considered by some to be sources of climate warming or net radiative forcing.
Abstract: Wetland ecosystems provide an optimum natural environment for the sequestration and long-term storage of carbon dioxide (CO2) from the atmosphere, yet are natural sources of greenhouse gases emissions, especially methane. We illustrate that most wetlands, when carbon sequestration is compared to methane emissions, do not have 25 times more CO2 sequestration than methane emissions; therefore, to many landscape managers and non specialists, most wetlands would be considered by some to be sources of climate warming or net radiative forcing. We show by dynamic modeling of carbon flux results from seven detailed studies by us of temperate and tropical wetlands and from 14 other wetland studies by others that methane emissions become unimportant within 300 years compared to carbon sequestration in wetlands. Within that time frame or less, most wetlands become both net carbon and radiative sinks. Furthermore, we estimate that the world’s wetlands, despite being only about 5–8 % of the terrestrial landscape, may currently be net carbon sinks of about 830 Tg/year of carbon with an average of 118 g-C m−2 year−1 of net carbon retention. Most of that carbon retention occurs in tropical/subtropical wetlands. We demonstrate that almost all wetlands are net radiative sinks when balancing carbon sequestration and methane emissions and conclude that wetlands can be created and restored to provide C sequestration and other ecosystem services without great concern of creating net radiative sources on the climate due to methane emissions.

752 citations


Journal ArticleDOI
TL;DR: Air pollution monitoring paradigm is rapidly changing due to recent advances in the development of portable, lower-cost air pollution sensors reporting data in near-real time at a high-time resolution, increased computational and visualization capabilities, and wireless communication/infrastructure.
Abstract: The air pollution monitoring paradigm is rapidly changing due to recent advances in (1) the development of portable, lower-cost air pollution sensors reporting data in near-real time at a high-time...

653 citations


Journal ArticleDOI
TL;DR: Progress is highlighted in the synthesis and catalytic applications of magnetic catalysts in organic synthesis and the heterogenization of the catalyst using magnetic nanoparticles allows it to be recovered and reused using an external magnet.

563 citations


Journal ArticleDOI
TL;DR: This paper proposes a compositional mixture of the food sources corrected for various metabolic factors based on the isometric log‐ratio transform, which can apply a range of time series and non‐parametric smoothing relationships.
Abstract: In this paper, we review recent advances in stable isotope mixing models (SIMMs) and place them into an overarching Bayesian statistical framework, which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixture. The most widely used application is quantifying the diet of organisms based on the food sources they have been observed to consume. At the centre of the multivariate statistical model we propose is a compositional mixture of the food sources corrected for various metabolic factors. The compositional component of our model is based on the isometric log-ratio transform. Through this transform, we can apply a range of time series and non-parametric smoothing relationships. We illustrate our models with three case studies based on real animal dietary behaviour.

549 citations


Journal ArticleDOI
TL;DR: Various named reactions, multi-component reactions and the synthesis of heterocyclic compounds are discussed including the use of various energy input systems such as microwave- and ultrasound irradiation, among others.
Abstract: Catalyst-free reactions developed during the last decade and the latest developments in this emerging field are summarized with a focus on catalyst-free reactions in-water and on-water. Various named reactions, multi-component reactions and the synthesis of heterocyclic compounds are discussed including the use of various energy input systems such as microwave- and ultrasound irradiation, among others. Organic chemists and the practitioners of this art both in academia and industry hopefully will continue to design benign methodologies for organic synthesis in aqueous media under catalyst-free conditions by using alternative energy inputs based on fundamental principles.

533 citations


Journal ArticleDOI
TL;DR: It is proposed that environmental aspects of antibiotic-resistance development be included in the processes of any HHRA addressing ARB, and a multicriteria decision analysis approach would be a useful way to undertake an HHRA of environmental antibiotic resistance that informs risk managers.
Abstract: Background: Only recently has the environment been clearly implicated in the risk of antibiotic resistance to clinical outcome, but to date there have been few documented approaches to formally assess these risks. Objective: We examined possible approaches and sought to identify research needs to enable human health risk assessments (HHRA) that focus on the role of the environment in the failure of antibiotic treatment caused by antibiotic-resistant pathogens. Methods: The authors participated in a workshop held 4–8 March 2012 in Quebec, Canada, to define the scope and objectives of an environmental assessment of antibiotic-resistance risks to human health. We focused on key elements of environmental-resistance-development “hot spots,” exposure assessment (unrelated to food), and dose response to characterize risks that may improve antibiotic-resistance management options. Discussion: Various novel aspects to traditional risk assessments were identified to enable an assessment of environmental antibiotic resistance. These include a) accounting for an added selective pressure on the environmental resistome that, over time, allows for development of antibiotic-resistant bacteria (ARB); b) identifying and describing rates of horizontal gene transfer (HGT) in the relevant environmental “hot spot” compartments; and c) modifying traditional dose–response approaches to address doses of ARB for various health outcomes and pathways. Conclusions: We propose that environmental aspects of antibiotic-resistance development be included in the processes of any HHRA addressing ARB. Because of limited available data, a multicriteria decision analysis approach would be a useful way to undertake an HHRA of environmental antibiotic resistance that informs risk managers. Citation: Ashbolt NJ, Amezquita A, Backhaus T, Borriello P, Brandt KK, Collignon P, Coors A, Finley R, Gaze WH, Heberer T, Lawrence JR, Larsson DG, McEwen SA, Ryan JJ, Schonfeld J, Silley P, Snape JR, Van den Eede C, Topp E. 2013. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ Health Perspect 121:993–1001; http://dx.doi.org/10.1289/ehp.1206316

523 citations


Journal ArticleDOI
TL;DR: GO nanomaterials will be stable in the natural aquatic environment and that significant aqueous transport of GO is possible, according to time-resolved dynamic light scattering relevant to natural and engineered systems.
Abstract: While graphene oxide (GO) has been found to be the most toxic graphene-based nanomaterial, its environmental fate is still unexplored. In this study, the aggregation kinetics and stability of GO were investigated using time-resolved dynamic light scattering over a wide range of aquatic chemistries (pH, salt types (NaCl, MgCl2, CaCl2), ionic strength) relevant to natural and engineered systems. Although pH did not have a notable influence on GO stability from pH 4 to 10, salt type and ionic strength had significant effects on GO stability due to electrical double layer compression, similar to other colloidal particles. The critical coagulation concentration (CCC) values of GO were determined to be 44 mM NaCl, 0.9 mM CaCl2, and 1.3 mM MgCl2. Aggregation and stability of GO in the aquatic environment followed colloidal theory (DLVO and Schulze-Hardy rule), even though GO’s shape is not spherical. CCC values of GO were lower than reported fullerene CCC values and higher than reported carbon nanotube CCC value...

493 citations


Journal ArticleDOI
TL;DR: Air quality and health co-benefits, especially as they are mainly local and near-term, provide strong additional motivation for transitioning to a low-carbon future.
Abstract: Actions to reduce greenhouse gas (GHG) emissions often reduce co-emitted air pollutants, bringing co-benefits for air quality and human health. Past studies1-6 typically evaluated near-term and local co-benefits, neglecting the long-range transport of air pollutants7-9, long-term demographic changes, and the influence of climate change on air quality10-12. Here we simulate the co-benefits of global GHG reductions on air quality and human health using a global atmospheric model and consistent future scenarios, via two mechanisms: a) reducing co-emitted air pollutants, and b) slowing climate change and its effect on air quality. We use new relationships between chronic mortality and exposure to fine particulate matter13 and ozone14, global modeling methods15, and new future scenarios16. Relative to a reference scenario, global GHG mitigation avoids 0.5±0.2, 1.3±0.5, and 2.2±0.8 million premature deaths in 2030, 2050, and 2100. Global average marginal co-benefits of avoided mortality are $50-380 (ton CO2)-1, which exceed previous estimates, exceed marginal abatement costs in 2030 and 2050, and are within the low range of costs in 2100. East Asian co-benefits are 10-70 times the marginal cost in 2030. Air quality and health co-benefits, especially as they are mainly local and near-term, provide strong additional motivation for transitioning to a low-carbon future.

Journal ArticleDOI
TL;DR: This paper organizes and presents the results of a number of workshops held that brought IEM practitioners together to share experiences and discuss future needs and directions, and presents IEM as a landscape containing four interdependent elements: applications, science, technology, and community.
Abstract: Integrated environmental modeling (IEM) is inspired by modern environmental problems, decisions, and policies and enabled by transdisciplinary science and computer capabilities that allow the environment to be considered in a holistic way. The problems are characterized by the extent of the environmental system involved, dynamic and interdependent nature of stressors and their impacts, diversity of stakeholders, and integration of social, economic, and environmental considerations. IEM provides a science-based structure to develop and organize relevant knowledge and information and apply it to explain, explore, and predict the behavior of environmental systems in response to human and natural sources of stress. During the past several years a number of workshops were held that brought IEM practitioners together to share experiences and discuss future needs and directions. In this paper we organize and present the results of these discussions. IEM is presented as a landscape containing four interdependent elements: applications, science, technology, and community. The elements are described from the perspective of their role in the landscape, current practices, and challenges that must be addressed. Workshop participants envision a global scale IEM community that leverages modern technologies to streamline the movement of science-based knowledge from its sources in research, through its organization into databases and models, to its integration and application for problem solving purposes. Achieving this vision will require that the global community of IEM stakeholders transcend social, and organizational boundaries and pursue greater levels of collaboration. Among the highest priorities for community action are the development of standards for publishing IEM data and models in forms suitable for automated discovery, access, and integration; education of the next generation of environmental stakeholders, with a focus on transdisciplinary research, development, and decision making; and providing a web-based platform for community interactions (e.g., continuous virtual workshops).

Journal ArticleDOI
TL;DR: In this article, the activation of persulfate (PS) by magnetite nanoparticles for the degradation of 2,4,4′-CB (PCB28), a selected model compound, and the underlying mechanism was elucidated.
Abstract: Magnetite nanoparticles (MNPs) are ubiquitous components of the subsurface environment, and increasing attention has been paid to MNPs due to their highly reductive and heterogeneous catalysis reactivity for the degradation of organic contaminants. However, most previous research studies neglected the generation of reactive oxygen species (ROS) by MNPs, which plays an important role in the transformation of contaminants. In this paper, we investigated the activation of persulfate (PS) by MNPs for the degradation of 2,4,4′-CB (PCB28), a selected model compound, and the underlying mechanism was elucidated. The results indicated that the PS can be activated by MNPs efficiently for the degradation of PCB28 at neutral pH. Electron paramagnetic resonance (EPR) technique was used to detect and identify the radical species in these processes. The mechanism of the activation of PS by MNPs was that superoxide radical anion (O2 −) generated by MNPs could activate the PS to produce more sulfate radicals (SO4 −), which favored the degradation of PCB28. The conclusion was further confirmed by quenching studies with the addition of superoxide dismutase (SOD). The effects of Fe(II) and pH on the degradation of PCB28 by PS/MNPs as well as the generation of ROS by MNPs were also studied. Both sorbed Fe(II) on MNPs surface and increased pH led to production of more O2 −, which activated the PS to give more SO4 − to degrade PCB28. In addition, increasing the oxygen concentration in the reaction solution favored the generation of O2 − as well as the degradation of PCB28. The findings of this study provide new insights into the mechanism of heterogeneous catalysis based on MNPs and the reactivity of MNPs toward environmental contaminants.

Journal ArticleDOI
TL;DR: In this paper, the impacts of climate change on US ecosystems were identified and the authors provided greater mechanistic understanding and geographic specificity for those impacts, including those that affect productivity of ecosystems or their ability to process chemical elements, while combined impacts of wildfire and insect outbreaks decrease forest productivity.
Abstract: Recent climate-change research largely confirms the impacts on US ecosystems identified in the 2009 National Climate Assessment and provides greater mechanistic understanding and geographic specificity for those impacts Pervasive climate-change impacts on ecosystems are those that affect productivity of ecosystems or their ability to process chemical elements Loss of sea ice, rapid warming, and higher organic inputs affect marine and lake productivity, while combined impacts of wildfire and insect outbreaks decrease forest productivity, mostly in the arid and semi-arid West Forests in wetter regions are more productive owing to warming Shifts in species ranges are so extensive that by 2100 they may alter biome composition across 5–20% of US land area Accelerated losses of nutrients from terrestrial ecosystems to receiving waters are caused by both winter warming and intensification of the hydrologic cycle Ecosystem feedbacks, especially those associated with release of carbon dioxide and methane rel

Journal ArticleDOI
TL;DR: In this article, the authors used modeled concentrations from an ensemble of chemistry?climate models to estimate the global burden of anthropogenic outdoor air pollution on present-day premature human mortality, and the component of that burden attributable to past climate change.
Abstract: Increased concentrations of ozone and fine particulate matter (PM2.5) since preindustrial times reflect increased emissions, but also contributions of past climate change. Here we use modeled concentrations from an ensemble of chemistry?climate models to estimate the global burden of anthropogenic outdoor air pollution on present-day premature human mortality, and the component of that burden attributable to past climate change. Using simulated concentrations for 2000 and 1850 and concentration?response functions (CRFs), we estimate that, at present, 470?000 (95% confidence interval, 140?000 to 900?000) premature respiratory deaths are associated globally and annually with anthropogenic ozone, and 2.1 (1.3 to 3.0) million deaths with anthropogenic PM2.5-related cardiopulmonary diseases (93%) and lung cancer (7%). These estimates are smaller than ones from previous studies because we use modeled 1850 air pollution rather than a counterfactual low concentration, and because of different emissions. Uncertainty in CRFs contributes more to overall uncertainty than the spread of model results. Mortality attributed to the effects of past climate change on air quality is considerably smaller than the global burden: 1500 (?20?000 to 27?000) deaths yr?1 due to ozone and 2200 (?350?000 to 140?000) due to PM2.5. The small multi-model means are coincidental, as there are larger ranges of results for individual models, reflected in the large uncertainties, with some models suggesting that past climate change has reduced air pollution mortality.

Journal ArticleDOI
TL;DR: Estimates show less penetration of coarse particulate matter into the thoracic and gas exchange regions of the respiratory tract than current size-selective criteria, which is most dependent on route of breathing.
Abstract: Particle size-selective sampling refers to the collection of particles of varying sizes that potentially reach and adversely affect specific regions of the respiratory tract. Thoracic and respirable fractions are defined as the fraction of inhaled particles capable of passing beyond the larynx and ciliated airways, respectively, during inhalation. In an attempt to afford greater protection to exposed individuals, current size-selective sampling criteria overestimate the population means of particle penetration into regions of the lower respiratory tract. The purpose of our analyses was to provide estimates of the thoracic and respirable fractions for adults and children during typical activities with both nasal and oral inhalation, that may be used in the design of experimental studies and interpretation of health effects evidence. We estimated the fraction of inhaled particles (0.5-20 μm aerodynamic diameter) penetrating beyond the larynx (based on experimental data) and ciliated airways (based on a mathematical model) for an adult male, adult female, and a 10 yr old child during typical daily activities and breathing patterns. Our estimates show less penetration of coarse particulate matter into the thoracic and gas exchange regions of the respiratory tract than current size-selective criteria. Of the parameters we evaluated, particle penetration into the lower respiratory tract was most dependent on route of breathing. For typical activity levels and breathing habits, we estimated a 50% cut-size for the thoracic fraction at an aerodynamic diameter of around 3 μm in adults and 5 μm in children, whereas current ambient and occupational criteria suggest a 50% cut-size of 10 μm. By design, current size-selective sample criteria overestimate the mass of particles generally expected to penetrate into the lower respiratory tract to provide protection for individuals who may breathe orally. We provide estimates of thoracic and respirable fractions for a variety of breathing habits and activities that may benefit the design of experimental studies and interpretation of particle size-specific health effects.

Journal ArticleDOI
TL;DR: In this article, a comprehensive literature review and comprising input by both satellite experts and emission inventory specialists, the review identifies several targets that seem promising: large point sources of NOx and SO2, species that are difficult to measure by other means (NH3 and CH4, for example), area sources that cannot easily be quantified by traditional bottom-up methods (such as unconventional oil and gas extraction, shipping, biomass burning, and biogenic sources), and the temporal variation of emissions (seasonal, diurnal, episodic).

Journal ArticleDOI
TL;DR: It is shown how measurements reveal a strong, but complex pattern of climatic dependence, which is increasingly being characterized using ground-based NH3 monitoring and satellite observations, while advances in process-based modelling are illustrated for agricultural and natural sources.
Abstract: Existing descriptions of bi-directional ammonia (NH3) land-atmosphere exchange incorporate temperature and moisture controls, and are beginning to be used in regional chemical transport models. However, such models have typically applied simpler emission factors to upscale the main NH3 emission terms. While this approach has successfully simulated the main spatial patterns on local to global scales, it fails to address the environment- and climate-dependence of emissions. To handle these issues, we outline the basis for a new modelling paradigm where both NH3 emissions and deposition are calculated online according to diurnal, seasonal and spatial differences in meteorology. We show how measurements reveal a strong, but complex pattern of climatic dependence, which is increasingly being characterized using ground-based NH3 monitoring and satellite observations, while advances in process-based modelling are illustrated for agricultural and natural sources, including a global application for seabird colonies. A future architecture for NH3 emission-deposition modelling is proposed that integrates the spatio-temporal interactions, and provides the necessary foundation to assess the consequences of climate change. Based on available measurements, a first empirical estimate suggests that 5°C warming would increase emissions by 42 per cent (28-67%). Together with increased anthropogenic activity, global NH3 emissions may increase from 65 (45-85) Tg N in 2008 to reach 132 (89-179) Tg by 2100.

Journal ArticleDOI
TL;DR: The authors summarizes recent activity in this general area where environmentally friendly synthetic techniques are currently being explored for the synthesis of “greener” AgNPs including the use of plant extracts, biodegradable polymers, and enzymes/bacteria and alternative energy input systems, such as microwave irradiation.
Abstract: The use of silver nanoparticles (AgNPs) is gaining in popularity due to silver’s antibacterial properties. Conventional methods for AgNP synthesis require dangerous chemicals and large quantities of energy (heat) and can result in formation of hazardous byproducts. This article summarizes recent activity in this general area where environmentally friendly synthetic techniques are currently being explored for the synthesis of “greener” AgNPs including the use of plant extracts, biodegradable polymers, and enzymes/bacteria and alternative energy input systems, such as microwave irradiation. Microwave heating enables efficient formation of nanostructures of uniform small sizes in shorter reaction times with reduced energy consumption; preventing agglomeration of ensuing nanoparticles is an additional attribute.

Journal ArticleDOI
TL;DR: Differences in oxidative ability of the activated persulfate were related to different radicals generated during activation, and greater removal of high molecular weight PAHs was measured with Persulfate activation.

Journal ArticleDOI
TL;DR: In this paper, the authors review the need for, use of, and demands on climate modeling to support robust decision frameworks, in the context of improving the contribution of climate information to effective decision making.
Abstract: In this paper, we review the need for, use of, and demands on climate modeling to support so-called ‘robust’ decision frameworks, in the context of improving the contribution of climate information to effective decision making. Such frameworks seek to identify policy vulnerabilities under deep uncertainty about the future and propose strategies for minimizing regret in the event of broken assumptions. We argue that currently there is a severe underutilization of climate models as tools for supporting decision making, and that this is slowing progress in developing informed adaptation and mitigation responses to climate change. This underutilization stems from two root causes, about which there is a growing body of literature: one, a widespread, but limiting, conception that the usefulness of climate models in planning begins and ends with regional-scale predictions of multidecadal climate change; two, the general failure so far to incorporate learning from the decision and social sciences into climate-related decision support in key sectors. We further argue that addressing these root causes will require expanding the conception of climate models; not simply as prediction machines within ‘predict-then-act’ decision frameworks, but as scenario generators, sources of insight into complex system behavior, and aids to critical thinking within robust decision frameworks. Such a shift, however, would have implications for how users perceive and use information from climate models and, ultimately, the types of information they will demand from these models—and thus for the types of simulations and numerical experiments that will have the most value for informing decision making. WIREs Clim Change 2013, 4:39–60. doi: 10.1002/wcc.202 For further resources related to this article, please visit the WIREs website. This article is a U.S. Government work, and as such, is in the public domain in the United States of America.

Journal ArticleDOI
TL;DR: The overall evidence is sufficient for a positive association of some organochlorine POPs with type 2 diabetes, but experimental data are needed to confirm the causality of these POPs, which will shed new light on the pathogenesis of diabetes.
Abstract: BACKGROUND: Diabetes is a major threat to public health in the United States and worldwide. Understanding the role of environmental chemicals in the development or progression of diabetes is an emerging issue in environmental health. OBJECTIVE: We assessed the epidemiologic literature for evidence of associations between persistent organic pollutants (POPs) and type 2 diabetes. METHODS: Using a PubMed search and reference lists from relevant studies or review articles, we identified 72 epidemiological studies that investigated associations of persistent organic pollutants (POPs) with diabetes. We evaluated these studies for consistency, strengths and weaknesses of study design (including power and statistical methods), clinical diagnosis, exposure assessment, study population characteristics, and identification of data gaps and areas for future research. CONCLUSIONS: Heterogeneity of the studies precluded conducting a meta-analysis, but the overall evidence is sufficient for a positive association of some organochlorine POPs with type 2 diabetes. Collectively, these data are not sufficient to establish causality. Initial data mining revealed that the strongest positive correlation of diabetes with POPs occurred with organochlorine compounds, such as trans-nonachlor, dichlorodiphenyldichloroethylene (DDE), polychlorinated biphenyls (PCBs), and dioxins and dioxin-like chemicals. There is less indication of an association between other nonorganochlorine POPs, such as perfluoroalkyl acids and brominated compounds, and type 2 diabetes. Experimental data are needed to confirm the causality of these POPs, which will shed new light on the pathogenesis of diabetes. This new information should be considered by governmental bodies involved in the regulation of environmental contaminants.

Journal ArticleDOI
TL;DR: The US government recently developed a range of values representing the monetized global damages associated with an incremental increase in carbon dioxide (CO2) emissions, commonly referred to as CO2 emissions.
Abstract: The US government recently developed a range of values representing the monetized global damages associated with an incremental increase in carbon dioxide (CO2) emissions, commonly referred...

Journal ArticleDOI
TL;DR: Exposure to HMW phthalates in this cohort appears to be driven by dietary intake, while non-dietary routes such as use of personal care products and ubiquitous sources including dust and indoor air appear to explain exposure to LMWphthalates.

Journal ArticleDOI
TL;DR: In this paper, the authors developed a high-resolution emission inventory of primary air pollutants for Yangtze River Delta (YRD) region, which included Shanghai plus 24 cities in the provinces of Jiangsu and Zhejiang.

Journal ArticleDOI
TL;DR: It is shown here that fundamental aspects of antitumor immunity in mice are significantly influenced by ambient housing temperature, raising the hypothesis that suppression of antitUMor immunity is an outcome of cold stress-induced thermogenesis.
Abstract: We show here that fundamental aspects of antitumor immunity in mice are significantly influenced by ambient housing temperature. Standard housing temperature for laboratory mice in research facilities is mandated to be between 20–26 °C; however, these subthermoneutral temperatures cause mild chronic cold stress, activating thermogenesis to maintain normal body temperature. When stress is alleviated by housing at thermoneutral ambient temperature (30–31 °C), we observe a striking reduction in tumor formation, growth rate and metastasis. This improved control of tumor growth is dependent upon the adaptive immune system. We observe significantly increased numbers of antigen-specific CD8+ T lymphocytes and CD8+ T cells with an activated phenotype in the tumor microenvironment at thermoneutrality. At the same time there is a significant reduction in numbers of immunosuppressive MDSCs and regulatory T lymphocytes. Notably, in temperature preference studies, tumor-bearing mice select a higher ambient temperature than non-tumor-bearing mice, suggesting that tumor-bearing mice experience a greater degree of cold-stress. Overall, our data raise the hypothesis that suppression of antitumor immunity is an outcome of cold stress-induced thermogenesis. Therefore, the common approach of studying immunity against tumors in mice housed only at standard room temperature may be limiting our understanding of the full potential of the antitumor immune response.

Journal ArticleDOI
TL;DR: While estimated intakes for individual phthalates in this study were more than an order of magnitude lower than U.S. Environmental Protection Agency reference doses, cumulative exposure to phthalate is of concern and a more representative survey of U.s. foods is indicated.
Abstract: Background: Phthalates have been found in many personal care and industrial products, but have not previously been reported in food purchased in the United States. Phthalates are ubiquitous synthetic compounds and therefore difficult to measure in foods containing trace levels. Phthalates have been associated with endocrine disruption and developmental alteration. Objectives: Our goals were to report concentrations of phthalates in U.S. food for the first time, specifically, nine phthalates in 72 individual food samples purchased in Albany, New York, and to compare these findings with other countries and estimate dietary phthalate intake. Methods: A convenience sample of commonly consumed foods was purchased from New York supermarkets. Methods were developed to analyze these foods using gas chromatography–mass spectroscopy. Dietary intakes of phthalates were estimated as the product of the food consumption rate and concentration of phthalates in that food. Results: The range of detection frequency of individual phthalates varied from 6% for dicyclohexyl phthalate (DCHP) to 74% for di-2-ethylhexyl phthalate (DEHP). DEHP concentrations were the highest of the phthalates measured in all foods except beef [where di-n-octyl phthalate (DnOP) was the highest phthalate found], with pork having the highest estimated mean concentration of any food group (mean 300 ng/g; maximum, 1,158 ng/g). Estimated mean adult intakes ranged from 0.004 μg/kg/day for dimethyl phthalate (DMP) to 0.673 μg/kg/day for DEHP. Conclusions: Phthalates are widely present in U.S. foods. While estimated intakes for individual phthalates in this study were more than an order of magnitude lower than U.S. Environmental Protection Agency reference doses, cumulative exposure to phthalates is of concern and a more representative survey of U.S. foods is indicated.

Journal ArticleDOI
TL;DR: Evidence is presented that in the presence of high levels of nitrogen oxides typical of urban atmospheres, 2-methyloxirane-2-carboxylic acid (methacrylic acid epoxide, MAE) is a precursor to known isoprene-derived SOA tracers, and ultimately to SOA, and it is proposed that MAE arises from decomposition of the OH adduct of methacryloyl peroxide (MPAN).
Abstract: Isoprene is a substantial contributor to the global secondary organic aerosol (SOA) burden, with implications for public health and the climate system. The mechanism by which isoprene-derived SOA is formed and the influence of environmental conditions, however, remain unclear. We present evidence from controlled smog chamber experiments and field measurements that in the presence of high levels of nitrogen oxides (NOx = NO + NO2) typical of urban atmospheres, 2-methyloxirane-2-carboxylic acid (methacrylic acid epoxide, MAE) is a precursor to known isoprene-derived SOA tracers, and ultimately to SOA. We propose that MAE arises from decomposition of the OH adduct of methacryloylperoxynitrate (MPAN). This hypothesis is supported by the similarity of SOA constituents derived from MAE to those from photooxidation of isoprene, methacrolein, and MPAN under high-NOx conditions. Strong support is further derived from computational chemistry calculations and Community Multiscale Air Quality model simulations, yielding predictions consistent with field observations. Field measurements taken in Chapel Hill, North Carolina, considered along with the modeling results indicate the atmospheric significance and relevance of MAE chemistry across the United States, especially in urban areas heavily impacted by isoprene emissions. Identification of MAE implies a major role of atmospheric epoxides in forming SOA from isoprene photooxidation. Updating current atmospheric modeling frameworks with MAE chemistry could improve the way that SOA has been attributed to isoprene based on ambient tracer measurements, and lead to SOA parameterizations that better capture the dependency of yield on NOx.

Journal ArticleDOI
TL;DR: The most sensitive and specific MST methodologies, based on an analysis of presence/absence of each marker in target and non-target fecal samples, were HF183 endpoint and HF183SYBR (human), CF193 and Rum2Bac (ruminant), CowM2 and CowM3 (cow), BacCan (dog), Gull2SYBR and LeeSeaGull (gull), and Pig2B Bac (pig).

Journal ArticleDOI
TL;DR: In this paper, adverse outcome pathways, constructs depicting linkages between mechanism-based molecular initiating events and impacts on individuals or populations, to assess how chemical and climate-specific variables interact to lead to adverse outcomes.
Abstract: Incorporation of global climate change (GCC) effects into assessments of chemical risk and injury requires integrated examinations of chemical and nonchemical stressors. Environmental variables altered by GCC (temperature, precipitation, salinity, pH) can influence the toxicokinetics of chemical absorption, distribution, metabolism, and excretion as well as toxicodynamic interactions between chemicals and target molecules. In addition, GCC challenges processes critical for coping with the external environment (water balance, thermoregulation, nutrition, and the immune, endocrine, and neurological systems), leaving organisms sensitive to even slight perturbations by chemicals when pushed to the limits of their physiological tolerance range. In simplest terms, GCC can make organisms more sensitive to chemical stressors, while alternatively, exposure to chemicals can make organisms more sensitive to GCC stressors. One challenge is to identify potential interactions between nonchemical and chemical stressors affecting key physiological processes in an organism. We employed adverse outcome pathways, constructs depicting linkages between mechanism-based molecular initiating events and impacts on individuals or populations, to assess how chemical- and climate-specific variables interact to lead to adverse outcomes. Case examples are presented for prospective scenarios, hypothesizing potential chemical–GCC interactions, and retrospective scenarios, proposing mechanisms for demonstrated chemical–climate interactions in natural populations. Understanding GCC interactions along adverse outcome pathways facilitates extrapolation between species or other levels of organization, development of hypotheses and focal areas for further research, and improved inputs for risk and resource injury assessments. Environ. Toxicol. Chem. 2013;32:32–48. © 2012 SETAC