scispace - formally typeset
Search or ask a question

Showing papers by "United States Environmental Protection Agency published in 2018"


Journal ArticleDOI
TL;DR: PM2.5 exposure may be related to additional causes of death than the five considered by the GBD and that incorporation of risk information from other, nonoutdoor, particle sources leads to underestimation of disease burden, especially at higher concentrations.
Abstract: Exposure to ambient fine particulate matter (PM2.5) is a major global health concern. Quantitative estimates of attributable mortality are based on disease-specific hazard ratio models that incorporate risk information from multiple PM2.5 sources (outdoor and indoor air pollution from use of solid fuels and secondhand and active smoking), requiring assumptions about equivalent exposure and toxicity. We relax these contentious assumptions by constructing a PM2.5-mortality hazard ratio function based only on cohort studies of outdoor air pollution that covers the global exposure range. We modeled the shape of the association between PM2.5 and nonaccidental mortality using data from 41 cohorts from 16 countries-the Global Exposure Mortality Model (GEMM). We then constructed GEMMs for five specific causes of death examined by the global burden of disease (GBD). The GEMM predicts 8.9 million [95% confidence interval (CI): 7.5-10.3] deaths in 2015, a figure 30% larger than that predicted by the sum of deaths among the five specific causes (6.9; 95% CI: 4.9-8.5) and 120% larger than the risk function used in the GBD (4.0; 95% CI: 3.3-4.8). Differences between the GEMM and GBD risk functions are larger for a 20% reduction in concentrations, with the GEMM predicting 220% higher excess deaths. These results suggest that PM2.5 exposure may be related to additional causes of death than the five considered by the GBD and that incorporation of risk information from other, nonoutdoor, particle sources leads to underestimation of disease burden, especially at higher concentrations.

1,283 citations


Journal ArticleDOI
04 Apr 2018-Nature
TL;DR: Analysis of changes in plant species richness on mountain summits over the past 145 years suggests that increased climatic warming has led to an acceleration in species richness increase, strikingly synchronized with accelerated global warming.
Abstract: Globally accelerating trends in societal development and human environmental impacts since the mid-twentieth century 1–7 are known as the Great Acceleration and have been discussed as a key indicator of the onset of the Anthropocene epoch 6 . While reports on ecological responses (for example, changes in species range or local extinctions) to the Great Acceleration are multiplying 8, 9 , it is unknown whether such biotic responses are undergoing a similar acceleration over time. This knowledge gap stems from the limited availability of time series data on biodiversity changes across large temporal and geographical extents. Here we use a dataset of repeated plant surveys from 302 mountain summits across Europe, spanning 145 years of observation, to assess the temporal trajectory of mountain biodiversity changes as a globally coherent imprint of the Anthropocene. We find a continent-wide acceleration in the rate of increase in plant species richness, with five times as much species enrichment between 2007 and 2016 as fifty years ago, between 1957 and 1966. This acceleration is strikingly synchronized with accelerated global warming and is not linked to alternative global change drivers. The accelerating increases in species richness on mountain summits across this broad spatial extent demonstrate that acceleration in climate-induced biotic change is occurring even in remote places on Earth, with potentially far-ranging consequences not only for biodiversity, but also for ecosystem functioning and services.

508 citations


Journal ArticleDOI
TL;DR: This method represents the state of the art of the current knowledge on how to assess potential impacts from water use in LCA, assessing both human and ecosystem users’ potential deprivation, at the midpoint level, and provides a consensus-based methodology for the calculation of a water scarcity footprint as per ISO 14046.
Abstract: Life cycle assessment (LCA) has been used to assess freshwater-related impacts according to a new water footprint framework formalized in the ISO 14046 standard. To date, no consensus-based approach exists for applying this standard and results are not always comparable when different scarcity or stress indicators are used for characterization of impacts. This paper presents the outcome of a 2-year consensus building process by the Water Use in Life Cycle Assessment (WULCA), a working group of the UNEP-SETAC Life Cycle Initiative, on a water scarcity midpoint method for use in LCA and for water scarcity footprint assessments. In the previous work, the question to be answered was identified and different expert workshops around the world led to three different proposals. After eliminating one proposal showing low relevance for the question to be answered, the remaining two were evaluated against four criteria: stakeholder acceptance, robustness with closed basins, main normative choice, and physical meaning. The recommended method, AWARE, is based on the quantification of the relative available water remaining per area once the demand of humans and aquatic ecosystems has been met, answering the question “What is the potential to deprive another user (human or ecosystem) when consuming water in this area?” The resulting characterization factor (CF) ranges between 0.1 and 100 and can be used to calculate water scarcity footprints as defined in the ISO standard. After 8 years of development on water use impact assessment methods, and 2 years of consensus building, this method represents the state of the art of the current knowledge on how to assess potential impacts from water use in LCA, assessing both human and ecosystem users’ potential deprivation, at the midpoint level, and provides a consensus-based methodology for the calculation of a water scarcity footprint as per ISO 14046.

455 citations



Journal ArticleDOI
TL;DR: Over the past decade, a range of sensor technologies became available on the market, enabling a revolutionary shift in air pollution monitoring and assessment, and it can be argued that with a significant future expansion of monitoring networks, including indoor environments, there may be less need for wearable or portable sensors/monitors to assess personal exposure.

418 citations



Journal ArticleDOI
TL;DR: The PECO informs the study design or inclusion and exclusion criteria for a review, as well as facilitating the interpretation of the directness of the findings based on how well the actual research findings represent the original question.

399 citations


Journal ArticleDOI
TL;DR: Improved smoke forecasting and translation of environmental health science into communication of actionable information for use by public health officials, healthcare professionals and the public is needed to motivate behaviors that lower exposure and protect public health, particularly among those at high risk.

288 citations


Journal ArticleDOI
TL;DR: This review article provides an overview of the techniques developed for the valorization of biomass in the production of platform chemicals within a biorefinery and the status for commercialization.
Abstract: Until recently, most of energy and industrially produced chemicals were derived from fossil fuel-based resources. This along with the continued depletion of finite fossil resources and their attributed adverse environmental impacts, alternatively sourced and more sustainable resources are being pursued as feedstock replacements. Thus, biomass has been identified as an alternate renewable and more sustainable resource as a means to reduce this sector's dependence on fossil fuel-based resources and to alleviate their environmental impacts. As such, lignocellulosic biomass has been further identified and demonstrated as an abundant renewable resource for the production of biofuels, platform chemicals, and their respective value-added products. This review article provides an overview of the techniques developed for the valorization of biomass in the production of platform chemicals within a biorefinery, and the status for commercialization.

282 citations


Journal ArticleDOI
TL;DR: This study aims to develop robust QSAR/QSPR models for chemical properties of environmental interest that can be used for regulatory purposes and uses data from the publicly available PHYSPROP database, a set of 13 common physicochemical and environmental fate properties.
Abstract: The collection of chemical structure information and associated experimental data for quantitative structure–activity/property relationship (QSAR/QSPR) modeling is facilitated by an increasing number of public databases containing large amounts of useful data. However, the performance of QSAR models highly depends on the quality of the data and modeling methodology used. This study aims to develop robust QSAR/QSPR models for chemical properties of environmental interest that can be used for regulatory purposes. This study primarily uses data from the publicly available PHYSPROP database consisting of a set of 13 common physicochemical and environmental fate properties. These datasets have undergone extensive curation using an automated workflow to select only high-quality data, and the chemical structures were standardized prior to calculation of the molecular descriptors. The modeling procedure was developed based on the five Organization for Economic Cooperation and Development (OECD) principles for QSAR models. A weighted k-nearest neighbor approach was adopted using a minimum number of required descriptors calculated using PaDEL, an open-source software. The genetic algorithms selected only the most pertinent and mechanistically interpretable descriptors (2–15, with an average of 11 descriptors). The sizes of the modeled datasets varied from 150 chemicals for biodegradability half-life to 14,050 chemicals for logP, with an average of 3222 chemicals across all endpoints. The optimal models were built on randomly selected training sets (75%) and validated using fivefold cross-validation (CV) and test sets (25%). The CV Q2 of the models varied from 0.72 to 0.95, with an average of 0.86 and an R2 test value from 0.71 to 0.96, with an average of 0.82. Modeling and performance details are described in QSAR model reporting format and were validated by the European Commission’s Joint Research Center to be OECD compliant. All models are freely available as an open-source, command-line application called OPEn structure–activity/property Relationship App (OPERA). OPERA models were applied to more than 750,000 chemicals to produce freely available predicted data on the U.S. Environmental Protection Agency’s CompTox Chemistry Dashboard.

271 citations


Journal ArticleDOI
TL;DR: Overall, despite some inconsistencies across phthalates in the specific outcomes associated with exposure, these results support that phthalate exposure at levels seen in human populations may have male reproductive effects, particularly DEHP and DBP.

Journal ArticleDOI
TL;DR: The largest global dataset to date on emission rates of all three GHGs is assembled and found they covary with lake size and trophic state and upscaled size-productivity weighted estimates are nearly 20% of global CO2 fossil fuel emission with ~75% of the climate impact due to CH4.
Abstract: Lakes and impoundments are important sources of greenhouse gases (GHG: i.e., CO2, CH4, N2O), yet global emission estimates are based on regionally-biased averages and elementary upscaling. We assembled the largest global dataset to date on emission rates of all three GHGs and found they covary with lake size and trophic state. Fitted models were upscaled to estimate global emission using global lake size inventories and a remotely-sensed global lake productivity distribution. Traditional upscaling approaches overestimated CO2 and N2O emission but underestimated CH4 by half. Our upscaled size-productivity weighted estimates (1.25-2.30 Pg of CO2-equivalents annually) are nearly 20% of global CO2 fossil fuel emission with ~75% of the climate impact due to CH4. Moderate global increases in eutrophication could translate to 5-40% increases in the GHG effects in the atmosphere, adding the equivalent effect of another 13% of fossil fuel combustion or an effect equal to GHG emissions from current land use change.

Journal ArticleDOI
TL;DR: It is suggested that future research directions should focus on study scale, on measuring and modeling of adoption as a continuous process, and on incorporation of social norms and uncertainty into decision-making.
Abstract: Best management practices (BMPs) for reducing agricultural non-point source pollution are widely available. However, agriculture remains a major global contributor to degradation of waters because farmers often do not adopt BMPs. To improve water quality, it is necessary to understand the factors that influence BMP adoption by farmers. We review the findings of BMP adoption studies from both developed and developing countries, published after (or otherwise not included in) two major literature reviews from 2007 and 2008. We summarize the study locations, scales, and BMPs studied; the analytical methods used; the factors evaluated; and the directionality of each factor’s influence on BMP adoption. We then present a conceptual framework for BMP adoption decisions that emphasizes the importance of scale, the tailoring or targeting of information and incentives, and the importance of expected farm profits. We suggest that future research directions should focus on study scale, on measuring and modeling of adoption as a continuous process, and on incorporation of social norms and uncertainty into decision-making. More research is needed on uses of social media and market recognition approaches (such as certificate schemes and consumer labeling) to influence BMP adoption.

Journal ArticleDOI
Maria Dornelas1, Laura H. Antão2, Laura H. Antão1, Faye Moyes1  +283 moreInstitutions (130)
TL;DR: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time to enable users to calculate temporal trends in biodiversity within and amongst assemblage using a broad range of metrics.
Abstract: Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene.Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record.Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km(2) (158 cm(2)) to 100 km(2) (1,000,000,000,000 cm(2)).Time period and grainBio: TIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year.Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates.

Journal ArticleDOI
TL;DR: In this paper, the performance of low-cost PM sensors under field conditions is not well understood, and the authors characterized the capabilities of a new low cost PM sensor model (Plantower modelPMS3003) for measuring PM 2.5 at 1min, 1h, 6h, 12h and 24h integration times.
Abstract: . Low-cost particulate matter (PM) sensors are promising tools for supplementing existing air quality monitoring networks. However, the performance of the new generation of low-cost PM sensors under field conditions is not well understood. In this study, we characterized the performance capabilities of a new low-cost PM sensor model (Plantower model PMS3003) for measuring PM 2.5 at 1 min, 1 h, 6 h, 12 h, and 24 h integration times. We tested the PMS3003 sensors in both low-concentration suburban regions (Durham and Research Triangle Park (RTP), NC, US) with 1 h PM 2.5 (mean ± SD) of 9±9 and 10±3 µ g m −3 , respectively, and a high-concentration urban location (Kanpur, India) with 1 h PM 2.5 of 36±17 and 116±57 µ g m −3 during monsoon and post-monsoon seasons, respectively. In Durham and Kanpur, the sensors were compared to a research-grade instrument (environmental β attenuation monitor, E-BAM) to determine how these sensors perform across a range of PM 2.5 concentrations and meteorological factors (e.g., temperature and relative humidity, RH). In RTP, the sensors were compared to three Federal Equivalent Methods (FEMs) including two Teledyne model T640s and a Thermo Scientific model 5030 SHARP to demonstrate the importance of the type of reference monitor selected for sensor calibration. The decrease in 1 h mean errors of the calibrated sensors using univariate linear models from Durham (201 %) to Kanpur monsoon (46 %) and post-monsoon (35 %) seasons showed that PMS3003 performance generally improved as ambient PM 2.5 increased. The precision of reference instruments (T640: ±0.5 µ g m −3 for 1 h; SHARP: ±2 µ g m −3 for 24 h, better than the E-BAM) is critical in evaluating sensor performance, and β -attenuation-based monitors may not be ideal for testing PM sensors at low concentrations, as underscored by (1) the less dramatic error reduction over averaging times in RTP against optically based T640 (from 27 % for 1 h to 9 % for 24 h) than in Durham (from 201 % to 15 %); (2) the lower errors in RTP than the Kanpur post-monsoon season (from 35 % to 11 %); and (3) the higher T640–PMS3003 correlations ( R2≥0.63 ) than SHARP–PMS3003 ( R2≥0.25 ). A major RH influence was found in RTP (1 h RH = 64 ± 22 %) due to the relatively high precision of the T640 measurements that can explain up to ∼30 % of the variance in 1 min to 6 h PMS3003 PM 2.5 measurements. When proper RH corrections are made by empirical nonlinear equations after using a more precise reference method to calibrate the sensors, our work suggests that the PMS3003 sensors can measure PM 2.5 concentrations within ∼10 % of ambient values. We observed that PMS3003 sensors appeared to exhibit a nonlinear response when ambient PM 2.5 exceeded ∼125 µ g m −3 and found that the quadratic fit is more appropriate than the univariate linear model to capture this nonlinearity and can further reduce errors by up to 11 %. Our results have substantial implications for how variability in ambient PM 2.5 concentrations, reference monitor types, and meteorological factors can affect PMS3003 performance characterization.

Journal ArticleDOI
TL;DR: This article used a 30 m resolution model of the entire conterminous US with a 2D representation of flood physics to produce estimates of flood hazard, which match to within 90% accuracy the skill of local models built with detailed data.
Abstract: Past attempts to estimate rainfall-driven flood risk across the US either have incomplete coverage, coarse resolution or use overly simplified models of the flooding process. In this paper, we use a new 30 m resolution model of the entire conterminous US with a 2D representation of flood physics to produce estimates of flood hazard, which match to within 90% accuracy the skill of local models built with detailed data. These flood depths are combined with exposure datasets of commensurate resolution to calculate current and future flood risk. Our data show that the total US population exposed to serious flooding is 2.6–3.1 times higher than previous estimates, and that nearly 41 million Americans live within the 1% annual exceedance probability floodplain (compared to only 13 million when calculated using FEMA flood maps). We find that population and GDP growth alone are expected to lead to significant future increases in exposure, and this change may be exacerbated in the future by climate change.

Journal ArticleDOI
TL;DR: A SeaWiFS chlorophyll-a validation data set is used to demonstrate a framework for satellite data product assessment and a multi-metric and user-dependent approach that can be applied within science, modeling, and resource management communities is recommended.
Abstract: Performance assessment of ocean color satellite data has generally relied on statistical metrics chosen for their common usage and the rationale for selecting certain metrics is infrequently explained. Commonly reported statistics based on mean squared errors, such as the coefficient of determination (r2), root mean square error, and regression slopes, are most appropriate for Gaussian distributions without outliers and, therefore, are often not ideal for ocean color algorithm performance assessment, which is often limited by sample availability. In contrast, metrics based on simple deviations, such as bias and mean absolute error, as well as pair-wise comparisons, often provide more robust and straightforward quantities for evaluating ocean color algorithms with non-Gaussian distributions and outliers. This study uses a SeaWiFS chlorophyll-a validation data set to demonstrate a framework for satellite data product assessment and recommends a multi-metric and user-dependent approach that can be applied within science, modeling, and resource management communities.

Journal ArticleDOI
TL;DR: The cost analysis showed that using the full digester capacity and achieving high digester performance can reduce the life cycle cost of WRRF upgrades by 15 percent over a 30-year period.
Abstract: To limit effluent impacts on eutrophication in receiving waterbodies, a small community water resource recovery facility (WRRF) upgraded their conventional activated sludge treatment process for biological nutrient removal, and considered enhanced primary settling and anaerobic digestion (AD) with co-digestion of high strength organic waste (HSOW). The community initiated the resource recovery hub concept with the intention of converting an energy-consuming wastewater treatment plant into a facility that generates energy and nutrients and reuses water. We applied life cycle assessment and life cycle cost assessment to evaluate the net impact of the potential conversion. The upgraded WRRF reduced eutrophication impacts by 40 percent compared to the legacy system. Other environmental impacts such as global climate change potential (GCCP) and cumulative energy demand (CED) were strongly affected by AD and composting assumptions. The scenario analysis showed that HSOW co-digestion with energy recovery can lead to reductions in GCCP and CED of 7 and 108 percent, respectively, for the upgraded WRRF (high feedstock-base AD performance scenarios) relative to the legacy system. The cost analysis showed that using the full digester capacity and achieving high digester performance can reduce the life cycle cost of WRRF upgrades by 15 percent over a 30-year period.

Journal ArticleDOI
TL;DR: The present 2017 Update Report assesses some of the highlights and new insights about the interactive nature of the direct and indirect effects of UV radiation, atmospheric processes, and climate change.
Abstract: This assessment, by the United Nations Environment Programme (UNEP) Environmental Effects Assessment Panel (EEAP), one of three Panels informing the Parties to the Montreal Protocol, provides an update, since our previous extensive assessment (Photochem. Photobiol. Sci., 2019, 18, 595-828), of recent findings of current and projected interactive environmental effects of ultraviolet (UV) radiation, stratospheric ozone, and climate change. These effects include those on human health, air quality, terrestrial and aquatic ecosystems, biogeochemical cycles, and materials used in construction and other services. The present update evaluates further evidence of the consequences of human activity on climate change that are altering the exposure of organisms and ecosystems to UV radiation. This in turn reveals the interactive effects of many climate change factors with UV radiation that have implications for the atmosphere, feedbacks, contaminant fate and transport, organismal responses, and many outdoor materials including plastics, wood, and fabrics. The universal ratification of the Montreal Protocol, signed by 197 countries, has led to the regulation and phase-out of chemicals that deplete the stratospheric ozone layer. Although this treaty has had unprecedented success in protecting the ozone layer, and hence all life on Earth from damaging UV radiation, it is also making a substantial contribution to reducing climate warming because many of the chemicals under this treaty are greenhouse gases.

Journal ArticleDOI
TL;DR: This critical review summarizes the photo-physics, -chemistry, and -biology that underpin sunlight-mediated inactivation, as well as the targets of damage and cellular responses to sunlight exposure, and illustrates how the environmental conditions can dramatically shift the inactivation rate of organisms.
Abstract: Health-relevant microorganisms present in natural surface waters and engineered treatment systems that are exposed to sunlight can be inactivated by a complex set of interacting mechanisms. The net impact of sunlight depends on the solar spectral irradiance, the susceptibility of the specific microorganism to each mechanism, and the water quality; inactivation rates can vary by orders of magnitude depending on the organism and environmental conditions. Natural organic matter (NOM) has a large influence, as it can attenuate radiation and thus decrease inactivation by endogenous mechanisms. Simultaneously NOM sensitizes the formation of reactive intermediates that can damage microorganisms via exogenous mechanisms. To accurately predict inactivation and design engineered systems that enhance solar inactivation, it is necessary to model these processes, although some details are not yet sufficiently well understood. In this critical review, we summarize the photo-physics, -chemistry, and -biology that underpin sunlight-mediated inactivation, as well as the targets of damage and cellular responses to sunlight exposure. Viruses that are not susceptible to exogenous inactivation are only inactivated if UVB wavelengths (280-320 nm) are present, such as in very clear, open waters or in containers that are transparent to UVB. Bacteria are susceptible to slightly longer wavelengths. Some viruses and bacteria (especially Gram-positive) are susceptible to exogenous inactivation, which can be initiated by visible as well as UV wavelengths. We review approaches to model sunlight-mediated inactivation and illustrate how the environmental conditions can dramatically shift the inactivation rate of organisms. The implications of this mechanistic understanding of solar inactivation are discussed for a range of applications, including recreational water quality, natural treatment systems, solar disinfection of drinking water (SODIS), and enhanced inactivation via the use of sensitizers and photocatalysts. Finally, priorities for future research are identified that will further our understanding of the key role that sunlight disinfection plays in natural systems and the potential to enhance this process in engineered systems.

Journal ArticleDOI
TL;DR: The results suggest that secondary OA from monoterpene oxidation accounts for approximately half of summertime fine OA in Centreville, AL, a forested area in the southeastern United States influenced by anthropogenic pollution.
Abstract: The chemical complexity of atmospheric organic aerosol (OA) has caused substantial uncertainties in understanding its origins and environmental impacts. Here, we provide constraints on OA origins through compositional characterization with molecular-level details. Our results suggest that secondary OA (SOA) from monoterpene oxidation accounts for approximately half of summertime fine OA in Centreville, AL, a forested area in the southeastern United States influenced by anthropogenic pollution. We find that different chemical processes involving nitrogen oxides, during days and nights, play a central role in determining the mass of monoterpene SOA produced. These findings elucidate the strong anthropogenic-biogenic interaction affecting ambient aerosol in the southeastern United States and point out the importance of reducing anthropogenic emissions, especially under a changing climate, where biogenic emissions will likely keep increasing.

Journal ArticleDOI
TL;DR: It is empirically demonstrated that nutrient reductions and biodiversity conservation are effective strategies to aid the successful recovery of degraded systems at regional scales, a finding which is highly relevant to the utility of environmental management programs worldwide.
Abstract: Humans strongly impact the dynamics of coastal systems, yet surprisingly few studies mechanistically link management of anthropogenic stressors and successful restoration of nearshore habitats over large spatial and temporal scales. Such examples are sorely needed to ensure the success of ecosystem restoration efforts worldwide. Here, we unite 30 consecutive years of watershed modeling, biogeochemical data, and comprehensive aerial surveys of Chesapeake Bay, United States to quantify the cascading effects of anthropogenic impacts on submersed aquatic vegetation (SAV), an ecologically and economically valuable habitat. We employ structural equation models to link land use change to higher nutrient loads, which in turn reduce SAV cover through multiple, independent pathways. We also show through our models that high biodiversity of SAV consistently promotes cover, an unexpected finding that corroborates emerging evidence from other terrestrial and marine systems. Due to sustained management actions that have reduced nitrogen concentrations in Chesapeake Bay by 23% since 1984, SAV has regained 17,000 ha to achieve its highest cover in almost half a century. Our study empirically demonstrates that nutrient reductions and biodiversity conservation are effective strategies to aid the successful recovery of degraded systems at regional scales, a finding which is highly relevant to the utility of environmental management programs worldwide.

Journal ArticleDOI
TL;DR: In this paper, the authors assessed, quantified and valued the ecosystem services of 32 coastal lagoons and found that the definitions of ecosystem services are still not generally accepted, and the quantification of ecosystem service is made in many different ways, using different units.

Journal ArticleDOI
TL;DR: The models suggest that areas including northern California, Oregon and Idaho in the West, and Florida, Louisiana and Georgia in the East were most affected by wildland fire events in the form of additional premature deaths and respiratory hospital admissions.

Journal ArticleDOI
TL;DR: The objective of this paper is to synthesize the scientific understanding of how Hg cycling in the aquatic environment is influenced by landscape perturbations at the local scale, perturbation that include watershed loadings, deforestation, reservoir and wetland creation, rice production, urbanization, mining and industrial point source pollution, and remediation.
Abstract: The environmental cycling of mercury (Hg) can be affected by natural and anthropogenic perturbations Of particular concern is how these disruptions increase mobilization of Hg from sites and alter the formation of monomethylmercury (MeHg), a bioaccumulative form of Hg for humans and wildlife The scientific community has made significant advances in recent years in understanding the processes contributing to the risk of MeHg in the environment The objective of this paper is to synthesize the scientific understanding of how Hg cycling in the aquatic environment is influenced by landscape perturbations at the local scale, perturbations that include watershed loadings, deforestation, reservoir and wetland creation, rice production, urbanization, mining and industrial point source pollution, and remediation We focus on the major challenges associated with each type of alteration, as well as management opportunities that could lessen both MeHg levels in biota and exposure to humans For example, our understanding of approximate response times to changes in Hg inputs from various sources or landscape alterations could lead to policies that prioritize the avoidance of certain activities in the most vulnerable systems and sequestration of Hg in deep soil and sediment pools The remediation of Hg pollution from historical mining and other industries is shifting towards in situ technologies that could be less disruptive and less costly than conventional approaches Contemporary artisanal gold mining has well-documented impacts with respect to Hg; however, significant social and political challenges remain in implementing effective policies to minimize Hg use Much remains to be learned as we strive towards the meaningful application of our understanding for stakeholders, including communities living near Hg-polluted sites, environmental policy makers, and scientists and engineers tasked with developing watershed management solutions Site-specific assessments of MeHg exposure risk will require new methods to predict the impacts of anthropogenic perturbations and an understanding of the complexity of Hg cycling at the local scale

Journal ArticleDOI
TL;DR: Results of the most comprehensive multi-scale assessment of the biological condition of streams in the Amazon to date are presented, examining functional responses of fish assemblages to land use and suggesting priorities for the improved management of stream systems in the multiple-use landscapes that predominate in human-modified tropical forests.
Abstract: Agricultural land use is a primary driver of environmental impacts on streams. However, the causal processes that shape these impacts operate through multiple pathways and at several spatial scales. This complexity undermines the development of more effective management approaches, and illustrates the need for more in-depth studies to assess the mechanisms that determine changes in stream biodiversity. Here we present results of the most comprehensive multi-scale assessment of the biological condition of streams in the Amazon to date, examining functional responses of fish assemblages to land use. We sampled fish assemblages from two large human-modified regions, and characterized stream conditions by physical habitat attributes and key landscape-change variables, including density of road crossings (i.e. riverscape fragmentation), deforestation, and agricultural intensification. Fish species were functionally characterized using ecomorphological traits describing feeding, locomotion, and habitat preferences, and these traits were used to derive indices that quantitatively describe the functional structure of the assemblages. Using structural equation modeling, we disentangled multiple drivers operating at different spatial scales, identifying causal pathways that significantly affect stream condition and the structure of the fish assemblages. Deforestation at catchment and riparian network scales altered the channel morphology and the stream bottom structure, changing the functional identity of assemblages. Local deforestation reduced the functional evenness of assemblages (i.e. increased dominance of specific trait combinations) mediated by expansion of aquatic vegetation cover. Riverscape fragmentation reduced functional richness, evenness and divergence, suggesting a trend toward functional homogenization and a reduced range of ecological niches within assemblages following the loss of regional connectivity. These results underscore the often-unrecognized importance of different land use changes, each of which can have marked effects on stream biodiversity. We draw on the relationships observed herein to suggest priorities for the improved management of stream systems in the multiple-use landscapes that predominate in human-modified tropical forests.

Journal ArticleDOI
TL;DR: The NeuralNetTools package provides a toolset for neural networks that complements existing quantitative techniques for data-intensive exploration and can be used for the interpretation of supervised neural network models created in R.
Abstract: Supervised neural networks have been applied as a machine learning technique to identify and predict emergent patterns among multiple variables. A common criticism of these methods is the inability to characterize relationships among variables from a fitted model. Although several techniques have been proposed to "illuminate the black box", they have not been made available in an open-source programming environment. This article describes the NeuralNetTools package that can be used for the interpretation of supervised neural network models created in R. Functions in the package can be used to visualize a model using a neural network interpretation diagram, evaluate variable importance by disaggregating the model weights, and perform a sensitivity analysis of the response variables to changes in the input variables. Methods are provided for objects from many of the common neural network packages in R, including caret, neuralnet, nnet, and RSNNS. The article provides a brief overview of the theoretical foundation of neural networks, a description of the package structure and functions, and an applied example to provide a context for model development with NeuralNetTools. Overall, the package provides a toolset for neural networks that complements existing quantitative techniques for data-intensive exploration.

Journal ArticleDOI
TL;DR: Cheminformatics and in vitro screening tests could be used as first approach to identify eco-neurotoxic pollutants and a small species test battery could be applied to assess the risks of ecosystems.
Abstract: The numbers of potential neurotoxicants in the environment are raising and pose a great risk for humans and the environment. Currently neurotoxicity assessment is mostly performed to predict and prevent harm to human populations. Despite all the efforts invested in the last years in developing novel in vitro or in silico test systems, in vivo tests with rodents are still the only accepted test for neurotoxicity risk assessment in Europe. Despite an increasing number of reports of species showing altered behaviour, neurotoxicity assessment for species in the environment is not required and therefore mostly not performed. Considering the increasing numbers of environmental contaminants with potential neurotoxic potential, eco-neurotoxicity should be also considered in risk assessment. In order to do so novel test systems are needed that can cope with species differences within ecosystems. In the field, online-biomonitoring systems using behavioural information could be used to detect neurotoxic effects and effect-directed analyses could be applied to identify the neurotoxicants causing the effect. Additionally, toxic pressure calculations in combination with mixture modelling could use environmental chemical monitoring data to predict adverse effects and prioritize pollutants for laboratory testing. Cheminformatics based on computational toxicological data from in vitro and in vivo studies could help to identify potential neurotoxicants. An array of in vitro assays covering different modes of action could be applied to screen compounds for neurotoxicity. The selection of in vitro assays could be guided by AOPs relevant for eco-neurotoxicity. In order to be able to perform risk assessment for eco-neurotoxicity, methods need to focus on the most sensitive species in an ecosystem. A test battery using species from different trophic levels might be the best approach. To implement eco-neurotoxicity assessment into European risk assessment, cheminformatics and in vitro screening tests could be used as first approach to identify eco-neurotoxic pollutants. In a second step, a small species test battery could be applied to assess the risks of ecosystems.

Journal ArticleDOI
TL;DR: PM-induced alterations in the microbiota were very apparent in beta-diversity comparisons throughout the GI tract and appeared to increase from the proximal to distal parts and maybe a potential mechanism that explains PM induced inflammation in theGI tract.

Journal ArticleDOI
TL;DR: This paper proposes a simple approach to quantify the reservoir GHG footprint in terms of the net changes in GHG fluxes to the atmosphere induced by damming, that is, ‘what the atmosphere sees.’
Abstract: Freshwater reservoirs are a known source of greenhouse gas (GHG) to the atmosphere, but their quantitative significance is still only loosely con- strained. Although part of this uncertainty can be attributed to the difficulties in measuring highly variable fluxes, it is also the result of a lack of a clear accounting methodology, particularly about what constitutes new emissions and potential new sinks. In this paper, we review the main processes involved in the generation of GHG in reservoir systems and propose a simple approach to quantify the reservoir GHG footprint in terms of the net changes in GHG fluxes to the atmosphere induced by damming, that is, 'what the atmosphere sees.' The approach takes into account the pre-impoundment GHG balance of the landscape, the temporal evolution of reservoir GHG emission profile as well as the natural emissions that are displaced to or away from the reservoir site resulting from hydrological and other changes. It also clarifies the portion of the reservoir carbon burial that can potentially be considered an offset to GHG emissions.