scispace - formally typeset
Search or ask a question

Showing papers by "United States Environmental Protection Agency published in 2019"


Journal ArticleDOI
TL;DR: This work provides a comprehensive review of recent research on various carbon adsorbents in terms of their surface functional groups and the associated removal behaviors and performances to heavy metals in aqueous solutions.

697 citations


Journal ArticleDOI
TL;DR: The elevated mobilization potential, e.g., through competition and ligand induced desorption, is the reason for faster Cd release from soil into groundwater than other heavy metals.

464 citations


Journal ArticleDOI
TL;DR: An ensemble model that integrated multiple machine learning algorithms and predictor variables to estimate daily PM2.5 at a resolution of 1’km × 1 km across the contiguous United States allows epidemiologists to accurately estimate the adverse health effect of PM 2.5.

339 citations


Journal ArticleDOI
TL;DR: It is shown that enhanced eutrophication of lakes and impoundments will substantially increase emissions of methane (+ 30–90%), a potent greenhouse gas, from these systems over the next century.
Abstract: Lakes and impoundments are an important source of methane (CH4), a potent greenhouse gas, to the atmosphere. A recent analysis shows aquatic productivity (i.e., eutrophication) is an important driver of CH4 emissions from lentic waters. Considering that aquatic productivity will increase over the next century due to climate change and a growing human population, a concomitant increase in aquatic CH4 emissions may occur. We simulate the eutrophication of lentic waters under scenarios of future nutrient loading to inland waters and show that enhanced eutrophication of lakes and impoundments will substantially increase CH4 emissions from these systems (+30–90%) over the next century. This increased CH4 emission has an atmospheric impact of 1.7–2.6 Pg C-CO2-eq y−1, which is equivalent to 18–33% of annual CO2 emissions from burning fossil fuels. Thus, it is not only important to limit eutrophication to preserve fragile water supplies, but also to avoid acceleration of climate change. .Agricultural intensification and a growing human population are likely to increase the eutrophication of lakes and impoundments over the next century. Here, the authors show that this enhanced eutrophication will substantially increase emissions of methane (+ 30–90%), a potent greenhouse gas, from these systems over the next century.

263 citations


Journal ArticleDOI
TL;DR: Of these methods, membrane-based separation processes (MBSPs) are effective over the conventional techniques for providing clean water from wastewater streams at an affordable cost with minimum energy requirement.

257 citations


Journal ArticleDOI
TL;DR: This critical review not only summarizes recent advances in alginate-based composites but also presents a perspective of future work for their environmental applications.
Abstract: Alginate-based composites have been extensively studied for applications in energy and environmental sectors due to their biocompatible, nontoxic, and cost-effective properties. This review is designed to provide an overview of the synthesis and application of alginate-based composites. In addition to an overview of current understanding of alginate biopolymer, gelation process, and cross-linking mechanisms, this work focuses on adsorption mechanisms and performance of different alginate-based composites for the removal of various pollutants including dyes, heavy metals, and antibiotics in water and wastewater. While encapsulation in alginate gel beads confers protective benefits to engineered nanoparticles, carbonaceous materials, cells and microbes, alginate-based composites typically exhibit enhanced adsorption performance. The physical and chemical properties of alginate-based composites determine the effectiveness under different application conditions. A series of alginate-based composites and their physicochemical and sorptive properties have been summarized. This critical review not only summarizes recent advances in alginate-based composites but also presents a perspective of future work for their environmental applications.

218 citations



Journal ArticleDOI
TL;DR: Applications of circuit theory to the science and practice of connectivity conservation, including topics in landscape and population genetics, movement and dispersal paths of organisms, anthropogenic barriers to connectivity, fire behavior, water flow, and ecosystem services, are focused on.
Abstract: Conservation practitioners have long recognized ecological connectivity as a global priority for preserving biodiversity and ecosystem function. In the early years of conservation science, ecologists extended principles of island biogeography to assess connectivity based on source patch proximity and other metrics derived from binary maps of habitat. From 2006 to 2008, the late Brad McRae introduced circuit theory as an alternative approach to model gene flow and the dispersal or movement routes of organisms. He posited concepts and metrics from electrical circuit theory as a robust way to quantify movement across multiple possible paths in a landscape, not just a single least-cost path or corridor. Circuit theory offers many theoretical, conceptual, and practical linkages to conservation science. We reviewed 459 recent studies citing circuit theory or the open-source software Circuitscape. We focused on applications of circuit theory to the science and practice of connectivity conservation, including topics in landscape and population genetics, movement and dispersal paths of organisms, anthropogenic barriers to connectivity, fire behavior, water flow, and ecosystem services. Circuit theory is likely to have an effect on conservation science and practitioners through improved insights into landscape dynamics, animal movement, and habitat-use studies and through the development of new software tools for data analysis and visualization. The influence of circuit theory on conservation comes from the theoretical basis and elegance of the approach and the powerful collaborations and active user community that have emerged. Circuit theory provides a springboard for ecological understanding and will remain an important conservation tool for researchers and practitioners around the globe.

193 citations


Journal ArticleDOI
TL;DR: Ass assessments of changes from 1869 to 2016 show that 1/3 of European seagrass area was lost due to disease, deteriorated water quality, and coastal development, with losses peaking in the 1970s and 1980s, but since then, loss rates slowed down for most of the species and fast-growing species recovered in some locations, making the net rate of change in seagRass area experience a reversal in the 2000s.
Abstract: Seagrass meadows, key ecosystems supporting fisheries, carbon sequestration and coastal protection, are globally threatened. In Europe, loss and recovery of seagrasses are reported, but the changes in extent and density at the continental scale remain unclear. Here we collate assessments of changes from 1869 to 2016 and show that 1/3 of European seagrass area was lost due to disease, deteriorated water quality, and coastal development, with losses peaking in the 1970s and 1980s. Since then, loss rates slowed down for most of the species and fast-growing species recovered in some locations, making the net rate of change in seagrass area experience a reversal in the 2000s, while density metrics improved or remained stable in most sites. Our results demonstrate that decline is not the generalised state among seagrasses nowadays in Europe, in contrast with global assessments, and that deceleration and reversal of declining trends is possible, expectingly bringing back the services they provide. Seagrass meadows are important but one of the most threatened ecosystems globally. Here the authors analyse data about extent and density of seagrasses in Europe from 1869 to 2016, and find evidence of recent trend reversal for declining European seagrass meadows.

193 citations


Journal ArticleDOI
TL;DR: In this article, the authors discuss the structure of the future integrated marine debris observing system (IMDOS) that is required to provide long-term monitoring of the state of the anthropogenic pollution and support operational activities to mitigate impacts on the ecosystem and safety of maritime activity.
Abstract: Plastics and other artificial materials pose new risks to health of the ocean. Anthropogenic debris travels across large distances and is ubiquitous in the water and on the shorelines, yet, observations of its sources, composition, pathways and distributions in the ocean are very sparse and inaccurate. Total amounts of plastics and other man-made debris in the ocean and on the shore, temporal trends in these amounts under exponentially increasing production, as well as degradation processes, vertical fluxes and time scales are largely unknown. Present ocean circulation models are not able to accurately simulate drift of debris because of its complex hydrodynamics. In this paper we discuss the structure of the future integrated marine debris observing system (IMDOS) that is required to provide long-term monitoring of the state of the anthropogenic pollution and support operational activities to mitigate impacts on the ecosystem and safety of maritime activity. The proposed observing system integrates remote sensing and in situ observations. Also, models are used to optimize the design of the system and, in turn, they will be gradually improved using the products of the system. Remote sensing technologies will provide spatially coherent coverage and consistent surveying time series at local to global scale. Optical sensors, including high-resolution imaging, multi- and hyperspectral, fluorescence, and Raman technologies, as well as SAR will be used to measure different types of debris. They will be implemented in a variety of platforms, from hand-held tools to ship-, buoy-, aircraft-, and satellite-based sensors. A network of in situ observations, including reports from volunteers, citizen scientists and ships of opportunity, will be developed to provide data for calibration/validation of remote sensors and to monitor the spread of plastic pollution and other marine debris. IMDOS will interact with other observing systems monitoring physical, chemical, and biological processes in the ocean and on shorelines as well as state of the ecosystem, maritime activities and safety, drift of sea ice, etc. The synthesized data will support innovative multi-disciplinary research and serve diverse community of users.

184 citations



Journal ArticleDOI
TL;DR: This study measured 17 PFAS in source and treated water from 25 drinking water treatment plants (DWTPs) as part of a broader study of CECs in drinking water across the United States.

Journal ArticleDOI
TL;DR: Brown bear attacks on humans between 2000 and 2015 across most of the range inhabited by the species were investigated, and attacks have increased significantly over time and were more frequent at high bear and low human population densities.
Abstract: The increasing trend of large carnivore attacks on humans not only raises human safety concerns but may also undermine large carnivore conservation efforts. Although rare, attacks by brown bears Ursus arctos are also on the rise and, although several studies have addressed this issue at local scales, information is lacking on a worldwide scale. Here, we investigated brown bear attacks (n = 664) on humans between 2000 and 2015 across most of the range inhabited by the species: North America (n = 183), Europe (n = 291), and East (n = 190). When the attacks occurred, half of the people were engaged in leisure activities and the main scenario was an encounter with a female with cubs. Attacks have increased significantly over time and were more frequent at high bear and low human population densities. There was no significant difference in the number of attacks between continents or between countries with different hunting practices. Understanding global patterns of bear attacks can help reduce dangerous encounters and, consequently, is crucial for informing wildlife managers and the public about appropriate measures to reduce this kind of conflicts in bear country.

Journal ArticleDOI
TL;DR: In this article, the authors integrate the experience of the international EU-funded project SOLUTIONS to shift the focus of water monitoring from a few legacy chemicals to complex chemical mixtures, and to identify relevant drivers of toxic effects.
Abstract: Environmental water quality monitoring aims to provide the data required for safeguarding the environment against adverse biological effects from multiple chemical contamination arising from anthropogenic diffuse emissions and point sources. Here, we integrate the experience of the international EU-funded project SOLUTIONS to shift the focus of water monitoring from a few legacy chemicals to complex chemical mixtures, and to identify relevant drivers of toxic effects. Monitoring serves a range of purposes, from control of chemical and ecological status compliance to safeguarding specific water uses, such as drinking water abstraction. Various water sampling techniques, chemical target, suspect and non-target analyses as well as an array of in vitro, in vivo and in situ bioanalytical methods were advanced to improve monitoring of water contamination. Major improvements for broader applicability include tailored sampling techniques, screening and identification techniques for a broader and more diverse set of chemicals, higher detection sensitivity, standardized protocols for chemical, toxicological, and ecological assessments combined with systematic evidence evaluation techniques. No single method or combination of methods is able to meet all divergent monitoring purposes. Current monitoring approaches tend to emphasize either targeted exposure or effect detection. Here, we argue that, irrespective of the specific purpose, assessment of monitoring results would benefit substantially from obtaining and linking information on the occurrence of both chemicals and potentially adverse biological effects. In this paper, we specify the information required to: (1) identify relevant contaminants, (2) assess the impact of contamination in aquatic ecosystems, or (3) quantify cause–effect relationships between contaminants and adverse effects. Specific strategies to link chemical and bioanalytical information are outlined for each of these distinct goals. These strategies have been developed and explored using case studies in the Danube and Rhine river basins as well as for rivers of the Iberian Peninsula. Current water quality assessment suffers from biases resulting from differences in approaches and associated uncertainty analyses. While exposure approaches tend to ignore data gaps (i.e., missing contaminants), effect-based approaches penalize data gaps with increased uncertainty factors. This integrated work suggests systematic ways to deal with mixture exposures and combined effects in a more balanced way, and thus provides guidance for future tailored environmental monitoring.


Journal ArticleDOI
01 Jul 2019
TL;DR: In this article, a typology of causal assumptions explicating the causal aims of any given network-centric study of social-ecological interdependencies is presented, unifying research design considerations that facilitate conceptualizing exactly what is interdependent, through what types of relationships and in relation to what kinds of environmental problems.
Abstract: Achieving effective, sustainable environmental governance requires a better understanding of the causes and consequences of the complex patterns of interdependencies connecting people and ecosystems within and across scales. Network approaches for conceptualizing and analysing these interdependencies offer one promising solution. Here, we present two advances we argue are needed to further this area of research: (i) a typology of causal assumptions explicating the causal aims of any given network-centric study of social–ecological interdependencies; (ii) unifying research design considerations that facilitate conceptualizing exactly what is interdependent, through what types of relationships and in relation to what kinds of environmental problems. The latter builds on the appreciation that many environmental problems draw from a set of core challenges that re-occur across contexts. We demonstrate how these advances combine into a comparative heuristic that facilitates leveraging case-specific findings of social–ecological interdependencies to generalizable, yet context-sensitive, theories based on explicit assumptions of causal relationships.

Journal ArticleDOI
TL;DR: This review summarizes beneficial FGDG applications that have been deemed to pose minimal environmental concern, emphasizing their principles, research gaps, and potential developments, with the aim of increasing the reuse rate ofFGDG.

Journal ArticleDOI
TL;DR: Chronic vaping disrupts the protease-antiprotease balance by increasing proteolysis in lung, which may place vapers at risk of developing chronic lung disease and indicates that vaping may not be safer than tobacco smoking.
Abstract: Rationale: Proteolysis is a key aspect of the lung’s innate immune system. Proteases, including neutrophil elastase and MMPs (matrix metalloproteases), modulate cell signaling, inflammation, tissue...

Journal ArticleDOI
TL;DR: In this paper, the current status and future prospects in the field of ocean colour focussing on large to medium resolution observations of oceans and coastal seas are described and a summary of future perspectives are provided.
Abstract: Spectrally-resolved water-leaving radiances (ocean colour) and inferred chlorophyll concentration are key to studying phytoplankton dynamics at seasonal and inter-annual scales, for a better understanding of the role of phytoplankton in marine biogeochemistry; the global carbon cycle; and the response of marine ecosystems to climate variability, change and feedback processes. Ocean colour data also have a critical role in operational observation systems monitoring coastal eutrophication, harmful algal blooms, and sediment plumes. The contiguous ocean-colour record reached 21 years in 2018; however, it is comprised of a number of one-off missions such that creating a consistent time-series of ocean-colour data requires merging of the individual sensors (including MERIS, Aqua-MODIS, SeaWiFS, VIIRS and OLCI) with differing sensor characteristics, without introducing artefacts. By contrast, the next decade will see consistent observations from operational ocean colour series with sensors of similar design and with a replacement strategy. Also, by 2029 the record will start to be of sufficient duration to discriminate climate change impacts from natural variability, at least in some regions. This paper describes current status and future prospects in the field of ocean colour focussing on large to medium resolution observations of oceans and coastal seas. It reviews the user requirements in terms of products and uncertainty characteristics and then describes features of current and future satellite ocean-colour sensors, both operational and innovative. The key role of in situ validation and calibration is highlighted as are ground segments that process the data received from the ocean-colour sensors and deliver analysis-ready products to end-users. Example applications of the ocean-colour data are presented, focussing on the climate data record and operational applications including water quality and assimilation into numerical models. Current capacity building and training activities pertinent to ocean are described and finally a summary of future perspectives is provided.

Journal ArticleDOI
TL;DR: Data and literature reports on PFAS occurrence in drinking water and treatment methods for their removal are reviewed, with the most promising and readily applied treatment technologies being activated carbon, anion exchange resins, and high-pressure membrane systems.
Abstract: Per-and polyfluoroalkyl substances (PFAS) occurrence in drinking water and treatment methods for their removal are reviewed. PFAS are fluorinated substances whose unique properties make them effective surface-active agents with uses ranging from stain repellants to fire-fighting foams. In response to concerns about drinking water contamination and health risks from PFAS exposure, the United States Environmental Protection Agency published Health Advisories (HAs) for perfluorooctanoic acid and perfluorooctane sulfonic acid. The occurrence of six PFAS in drinking water has been reported in the Third Unregulated Contaminant Monitoring Rule (UCMR3), and subsequent analysis of the dataset suggested that four percent of water systems reported at least one detectable PFAS compound and 1.3 percent of water systems reported results above the HAs. Many treatment technologies have been evaluated in the literature, with the most promising and readily applied treatment technologies being activated carbon, anion exchange resins, and high-pressure membrane systems. From these data and literature reports, research and data gaps were identified and suggestions for future research are provided.

Journal ArticleDOI
01 Jul 2019
TL;DR: The Montreal Protocol has also played an important role in mitigating climate change as discussed by the authors, and the Montreal Protocol will continue to have far-reaching benefits for human well-being and environmental sustainability.
Abstract: Changes in stratospheric ozone and climate over the past 40-plus years have altered the solar ultraviolet (UV) radiation conditions at the Earth’s surface. Ozone depletion has also contributed to climate change across the Southern Hemisphere. These changes are interacting in complex ways to affect human health, food and water security, and ecosystem services. Many adverse effects of high UV exposure have been avoided thanks to the Montreal Protocol with its Amendments and Adjustments, which have effectively controlled the production and use of ozone-depleting substances. This international treaty has also played an important role in mitigating climate change. Climate change is modifying UV exposure and affecting how people and ecosystems respond to UV; these effects will become more pronounced in the future. The interactions between stratospheric ozone, climate and UV radiation will therefore shift over time; however, the Montreal Protocol will continue to have far-reaching benefits for human well-being and environmental sustainability.

Journal ArticleDOI
TL;DR: It is concluded that the GNSFs hold great potential in remediating contaminated aquatic environments, as well as their potential application for removing several recalcitrant contaminants including organic dyes, antibiotics, and heavy metal ions.

Journal ArticleDOI
TL;DR: A multiagency study of organic and inorganic chemicals in urban stormwater from 50 runoff events at 21 sites across the United States demonstrated that stormwater transports substantial mixtures of polycyclic aromatic hydrocarbons, bioactive contaminants, and other organic chemicals known or suspected to pose environmental health concern.
Abstract: Increasing global reliance on stormwater control measures to reduce discharge to surface water, increase groundwater recharge, and minimize contaminant delivery to receiving waterbodies necessitate...

Journal ArticleDOI
TL;DR: This isotopic information provides new insight into the mechanisms of transformation and cycling of reactive N in the atmosphere and moreover helps resolve the contribution of multiple NOx and NH3 emission sources to deposition across landscapes, regions, and continents.

Journal ArticleDOI
TL;DR: Understanding of relationships between people and rivers as conceived under the renewed definition of environmental flows is synthesized and called for scientists and water managers to recognize the diversity of ways of knowing, relating to, and utilizing rivers, and to place this recognition at the center of future environmental flow assessments.
Abstract: River flows connect people, places, and other forms of life, inspiring and sustaining diverse cultural beliefs, values, and ways of life. The concept of environmental flows provides a framework for improving understanding of relationships between river flows and people, and for supporting those that are mutually beneficial. Nevertheless, most approaches to determining environmental flows remain grounded in the biophysical sciences. The newly revised Brisbane Declaration and Global Action Agenda on Environmental Flows (2018) represents a new phase in environmental flow science and an opportunity to better consider the co-constitution of river flows, ecosystems, and society, and to more explicitly incorporate these relationships into river management. We synthesize understanding of relationships between people and rivers as conceived under the renewed definition of environmental flows. We present case studies from Honduras, India, Canada, New Zealand, and Australia that illustrate multidisciplinary, collaborative efforts where recognizing and meeting diverse flow needs of human populations was central to establishing environmental flow recommendations. We also review a small body of literature to highlight examples of the diversity and interdependencies of human-flow relationships-such as the linkages between river flow and human well-being, spiritual needs, cultural identity, and sense of place-that are typically overlooked when environmental flows are assessed and negotiated. Finally, we call for scientists and water managers to recognize the diversity of ways of knowing, relating to, and utilizing rivers, and to place this recognition at the center of future environmental flow assessments. This article is categorized under: Water and Life > Conservation, Management, and Awareness Human Water > Water Governance Human Water > Water as Imagined and Represented.

Journal ArticleDOI
TL;DR: Biochar may play a role in reducing Cd bioaccumulation, trophic transfer, and improving environmental quality and human health and biochar application promoted the formation of (oxy)hydroxide, carbonate, and organically bound Cd phases.

Journal ArticleDOI
TL;DR: The most relevant applications for metabolomics in regulatory toxicology are identified and best practice guidelines, performance and reporting standards for acquiring and analysing untargeted metabolomics and targeted metabolite data are developed.
Abstract: Metabolomics is a widely used technology in academic research, yet its application to regulatory science has been limited. The most commonly cited barrier to its translation is lack of performance and reporting standards. The MEtabolomics standaRds Initiative in Toxicology (MERIT) project brings together international experts from multiple sectors to address this need. Here, we identify the most relevant applications for metabolomics in regulatory toxicology and develop best practice guidelines, performance and reporting standards for acquiring and analysing untargeted metabolomics and targeted metabolite data. We recommend that these guidelines are evaluated and implemented for several regulatory use cases.

Journal ArticleDOI
TL;DR: A new version (version 2) of the genomic dose-response analysis software, BMDExpress, has been created, which addresses the increasing use of transcriptomic dose- response data in toxicology, drug design, risk assessment and translational research.
Abstract: Summary A new version (version 2) of the genomic dose-response analysis software, BMDExpress, has been created. The software addresses the increasing use of transcriptomic dose-response data in toxicology, drug design, risk assessment and translational research. In this new version, we have implemented additional statistical filtering options (e.g. Williams' trend test), curve fitting models, Linux and Macintosh compatibility and support for additional transcriptomic platforms with up-to-date gene annotations. Furthermore, we have implemented extensive data visualizations, on-the-fly data filtering, and a batch-wise analysis workflow. We have also significantly re-engineered the code base to reflect contemporary software engineering practices and streamline future development. The first version of BMDExpress was developed in 2007 to meet an unmet demand for easy-to-use transcriptomic dose-response analysis software. Since its original release, however, transcriptomic platforms, technologies, pathway annotations and quantitative methods for data analysis have undergone a large change necessitating a significant re-development of BMDExpress. To that end, as of 2016, the National Toxicology Program assumed stewardship of BMDExpress. The result is a modernized and updated BMDExpress 2 that addresses the needs of the growing toxicogenomics user community. Availability and implementation BMDExpress 2 is available at https://github.com/auerbachs/BMDExpress-2/releases. Supplementary information Supplementary data are available at Bioinformatics online.

Journal ArticleDOI
TL;DR: The genesis of EPA’s Non-Targeted Analysis Collaborative Trial (ENTACT), all study methods and materials, and an analysis of results submitted to date are described.
Abstract: In August 2015, the US Environmental Protection Agency (EPA) convened a workshop entitled “Advancing non-targeted analyses of xenobiotic chemicals in environmental and biological media.” The purpose of the workshop was to bring together the foremost experts in non-targeted analysis (NTA) to discuss the state-of-the-science for generating, interpreting, and exchanging NTA measurement data. During the workshop, participants discussed potential designs for a collaborative project that would use EPA resources, including the ToxCast library of chemical substances, the DSSTox database, and the CompTox Chemicals Dashboard, to evaluate cutting-edge NTA methods. That discussion was the genesis of EPA’s Non-Targeted Analysis Collaborative Trial (ENTACT). Nearly 30 laboratories have enrolled in ENTACT and used a variety of chromatography, mass spectrometry, and data processing approaches to characterize ten synthetic chemical mixtures, three standardized media (human serum, house dust, and silicone band) extracts, and thousands of individual substances. Initial results show that nearly all participants have detected and reported more compounds in the mixtures than were intentionally added, with large inter-lab variability in the number of reported compounds. A comparison of gas and liquid chromatography results shows that the majority (45.3%) of correctly identified compounds were detected by only one method and 15.4% of compounds were not identified. Finally, a limited set of true positive identifications indicates substantial differences in observable chemical space when employing disparate separation and ionization techniques as part of NTA workflows. This article describes the genesis of ENTACT, all study methods and materials, and an analysis of results submitted to date.

Journal ArticleDOI
TL;DR: This frontier review highlights the altered and newly-emerging properties and functions of CMNHs that are distinct from those of their parent component materials that direct their performances at the critical energy-water-environment (EWE) nexus and beyond.
Abstract: Nanotechnology has unprecedentedly revolutionized human societies over the past decades and will continue to advance our broad societal goals in the coming decades. The research, development, and particularly the application of engineered nanomaterials have shifted the focus from "less efficient" single-component nanomaterials toward "superior-performance", next-generation multifunctional nanohybrids. Carbon nanomaterials (e.g., carbon nanotubes, graphene family nanomaterials, carbon dots, and graphitic carbon nitride) and metal/metal oxide nanoparticles (e.g., Ag, Au, CdS, Cu2O, MoS2, TiO2, and ZnO) combinations are the most commonly pursued nanohybrids (carbon-metal nanohybrids; CMNHs), which exhibit appealing properties and promising multifunctionalities for addressing multiple complex challenges faced by humanity at the critical energy-water-environment (EWE) nexus. In this frontier review, we first highlight the altered and newly emerging properties (e.g., electronic and optical attributes, particle size, shape, morphology, crystallinity, dimensionality, carbon/metal ratio, and hybridization mode) of CMNHs that are distinct from those of their parent component materials. We then illustrate how these important newly emerging properties and functions of CMNHs direct their performances at the EWE nexus including energy harvesting (e.g., H2O splitting and CO2 conversion), water treatment (e.g., contaminant removal and membrane technology), and environmental sensing and in situ nanoremediation. This review concludes with identifications of critical knowledge gaps and future research directions for maximizing the benefits of next-generation multifunctional CMNHs at the EWE nexus and beyond.