scispace - formally typeset
Search or ask a question
Institution

United States Environmental Protection Agency

GovernmentWashington D.C., District of Columbia, United States
About: United States Environmental Protection Agency is a government organization based out in Washington D.C., District of Columbia, United States. It is known for research contribution in the topics: Population & Environmental exposure. The organization has 13873 authors who have published 26902 publications receiving 1191729 citations. The organization is also known as: EPA & Environmental Protection Agency.


Papers
More filters
Journal ArticleDOI
Stephen S Lim1, Theo Vos, Abraham D. Flaxman1, Goodarz Danaei2  +207 moreInstitutions (92)
TL;DR: In this paper, the authors estimated deaths and disability-adjusted life years (DALYs; sum of years lived with disability [YLD] and years of life lost [YLL]) attributable to the independent effects of 67 risk factors and clusters of risk factors for 21 regions in 1990 and 2010.

9,324 citations

Journal ArticleDOI
TL;DR: The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) as discussed by the authors provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution.

5,668 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Abstract: Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

4,591 citations

Journal ArticleDOI
TL;DR: This review attempts to synthesize the literature on environmental origin, distribution/occurrence, and effects and to catalyze a more focused discussion in the environmental science community.
Abstract: During the last three decades, the impact of chemical pollution has focused almost exclusively on the conventional "priority" pollutants, especially those acutely toxic/carcinogenic pesticides and industrial intermediates displaying persistence in the environment. This spectrum of chemicals, however, is only one piece of the larger puzzle in "holistic" risk assessment. Another diverse group of bioactive chemicals receiving comparatively little attention as potential environmental pollutants includes the pharmaceuticals and active ingredients in personal care products (in this review collectively termed PPCPs), both human and veterinary, including not just prescription drugs and biologics, but also diagnostic agents, "nutraceuticals," fragrances, sun-screen agents, and numerous others. These compounds and their bioactive metabolites can be continually introduced to the aquatic environment as complex mixtures via a number of routes but primarily by both untreated and treated sewage. Aquatic pollution is particularly troublesome because aquatic organisms are captive to continual life-cycle, multigenerational exposure. The possibility for continual but undetectable or unnoticed effects on aquatic organisms is particularly worrisome because effects could accumulate so slowly that major change goes undetected until the cumulative level of these effects finally cascades to irreversible change--change that would otherwise be attributed to natural adaptation or ecologic succession. As opposed to the conventional, persistent priority pollutants, PPCPs need not be persistent if they are continually introduced to surface waters, even at low parts-per-trillion/parts-per-billion concentrations (ng-microg/L). Even though some PPCPs are extremely persistent and introduced to the environment in very high quantities and perhaps have already gained ubiquity worldwide, others could act as if they were persistent, simply because their continual infusion into the aquatic environment serves to sustain perpetual life-cycle exposures for aquatic organisms. This review attempts to synthesize the literature on environmental origin, distribution/occurrence, and effects and to catalyze a more focused discussion in the environmental science community.

4,347 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explored spatial and temporal trends in mortality and burden of disease attributable to ambient air pollution from 1990 to 2015 at global, regional, and country levels, and estimated the relative risk of mortality from ischaemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, lung cancer, and lower respiratory infections from epidemiological studies using nonlinear exposure-response functions spanning the global range of exposure.

3,960 citations


Authors

Showing all 13926 results

NameH-indexPapersCitations
Dennis R. Winge8225518407
Rafael Luque8069328395
Mike J. McLaughlin8043523522
Philip J. Landrigan8050026876
Sandra Brown8019131923
Mark Johnson8042276089
Claude A. Piantadosi7838120412
Jonathan D. Licht7726724847
Pratim Biswas7749822617
Wei Zhang76193234966
Kate M. Scow7624318573
Enzo Lombi7528019824
Linda S. Birnbaum7527622799
John C. Crittenden7547720445
Douglas A. Bell7518417282
Network Information
Related Institutions (5)
Research Triangle Park
35.8K papers, 1.6M citations

89% related

Pacific Northwest National Laboratory
27.9K papers, 1.1M citations

87% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

86% related

Leibniz Association
35.6K papers, 1M citations

85% related

Oregon State University
64K papers, 2.6M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202356
202279
2021780
2020787
2019852
2018929