scispace - formally typeset
Search or ask a question
Institution

United States Environmental Protection Agency

GovernmentWashington D.C., District of Columbia, United States
About: United States Environmental Protection Agency is a government organization based out in Washington D.C., District of Columbia, United States. It is known for research contribution in the topics: Population & Environmental exposure. The organization has 13873 authors who have published 26902 publications receiving 1191729 citations. The organization is also known as: EPA & Environmental Protection Agency.


Papers
More filters
Journal ArticleDOI
TL;DR: Gutowski et al. as mentioned in this paper found evidence that US firms may be at a disadvantage due in part to a lack of coherent national goals in such areas as waste management, global warming, energy efficiency and product take back.

414 citations

Journal ArticleDOI
TL;DR: The results improve the understanding of P and its labile components within a spatially explicit context and distinguish P-enriched areas from unaffected ("natural") areas and intermediate zones that are currently undergoing change as P is mobilized and translocated.
Abstract: The hazards associated with pathogens in land-applied animal and human wastes have long been recognized. Management of these risks requires an understanding of sources, concentrations, and removal by processes that may be used to treat the wastes; survival in the environment; and exposure to sensitive populations. The major sources are animal feeding operations, municipal wastewater treatment plant effluents, biosolids, and on-site treatment systems. More than 150 known enteric pathogens may be present in the untreated wastes, and one new enteric pathogen has been discovered every year over the past decade. There has been increasing demand that risks associated with the land treatment and application be better defined. For risks to be quantified, more data are needed on the concentrations of pathogens in wastes, the effectiveness of treatment processes, standardization of detection methodology, and better quantification of exposure.

414 citations

Journal ArticleDOI
TL;DR: Both maternal and developmental toxicity of PFOS are demonstrated in the rat and mouse, with a host of birth defects, including cleft palate, anasarca, ventricular septal defect, and enlargement of the right atrium seen.

414 citations

Journal ArticleDOI
TL;DR: In this article, the activation of persulfate (PS) by magnetite nanoparticles for the degradation of 2,4,4′-CB (PCB28), a selected model compound, and the underlying mechanism was elucidated.
Abstract: Magnetite nanoparticles (MNPs) are ubiquitous components of the subsurface environment, and increasing attention has been paid to MNPs due to their highly reductive and heterogeneous catalysis reactivity for the degradation of organic contaminants. However, most previous research studies neglected the generation of reactive oxygen species (ROS) by MNPs, which plays an important role in the transformation of contaminants. In this paper, we investigated the activation of persulfate (PS) by MNPs for the degradation of 2,4,4′-CB (PCB28), a selected model compound, and the underlying mechanism was elucidated. The results indicated that the PS can be activated by MNPs efficiently for the degradation of PCB28 at neutral pH. Electron paramagnetic resonance (EPR) technique was used to detect and identify the radical species in these processes. The mechanism of the activation of PS by MNPs was that superoxide radical anion (O2 −) generated by MNPs could activate the PS to produce more sulfate radicals (SO4 −), which favored the degradation of PCB28. The conclusion was further confirmed by quenching studies with the addition of superoxide dismutase (SOD). The effects of Fe(II) and pH on the degradation of PCB28 by PS/MNPs as well as the generation of ROS by MNPs were also studied. Both sorbed Fe(II) on MNPs surface and increased pH led to production of more O2 −, which activated the PS to give more SO4 − to degrade PCB28. In addition, increasing the oxygen concentration in the reaction solution favored the generation of O2 − as well as the degradation of PCB28. The findings of this study provide new insights into the mechanism of heterogeneous catalysis based on MNPs and the reactivity of MNPs toward environmental contaminants.

413 citations


Authors

Showing all 13926 results

NameH-indexPapersCitations
Joel Schwartz1831149109985
Timothy A. Springer167669122421
Chien-Jen Chen12865566360
Matthew W. Gillman12652955835
J. D. Hansen12297576198
Dionysios D. Dionysiou11667548449
John P. Giesy114116262790
Douglas W. Dockery10524457461
Charles P. Gerba10269235871
David A. Savitz9957232947
Stephen Polasky9935459148
Judith C. Chow9642732632
Diane R. Gold9544330717
Scott L. Zeger9537778179
Rajender S. Varma9567237083
Network Information
Related Institutions (5)
Research Triangle Park
35.8K papers, 1.6M citations

89% related

Pacific Northwest National Laboratory
27.9K papers, 1.1M citations

87% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

86% related

Leibniz Association
35.6K papers, 1M citations

85% related

Oregon State University
64K papers, 2.6M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202356
202279
2021780
2020787
2019852
2018929