scispace - formally typeset
Search or ask a question
Institution

United States Environmental Protection Agency

GovernmentWashington D.C., District of Columbia, United States
About: United States Environmental Protection Agency is a government organization based out in Washington D.C., District of Columbia, United States. It is known for research contribution in the topics: Population & Environmental exposure. The organization has 13873 authors who have published 26902 publications receiving 1191729 citations. The organization is also known as: EPA & Environmental Protection Agency.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors derived from extensive field measurements on foliar emissions in the U.S. approximate global inputs of isoprene and terpenes of 3.5 times 10 to 14th power and 4.8 times 10-14th power g(C)/yr, respectively.
Abstract: Extrapolating from extensive field measurements on foliar emissions in the U.S. approximate global inputs of isoprene and terpenes of 3.5 times 10 to the 14th power and 4.8 times 10 to the 14th power g(C)/yr, respectively, are obtained. The oxidation of these hydrocarbons could contribute in an important way to the atmospheric sources of CO (4.2-13.3 times 10 to the 14th power g/yr) and H2 (10-35 times 10 to the 12th power g/yr), and to organic species soluble in rainwater

361 citations

Journal ArticleDOI
TL;DR: The results appear to describe a resonance-like relationship in which the frequency of the electromagnetic field that can induce a change in efflux is proportional to a product of LGF density and an index, 2n + 1, where n = 0,1.
Abstract: Two independent laboratories have demonstrated that electromagnetic radiation at specific frequencies can cause a change in the efflux of calcium ions from brain tissue in vitro. In a local geomagnetic field (LGF) at a density of 38 microTesla (microT), 15- and 45-Hz electromagnetic signals (40 Vp-p/m in air) have been shown to induce a change in the efflux of calcium ions from the exposed tissues, whereas 1- and 30-Hz signals do not. We now show that the effective 15-Hz signal can be rendered ineffective when the LGF is reduced to 19 microT with Helmholtz coils. In addition, the ineffective 30-Hz signal becomes effective when the LGF is changed to +/- 25.3 microT or to +/- 76 microT. These results demonstrate that the net intensity of the LGF is an important variable. The results appear to describe a resonance-like relationship in which the frequency of the electromagnetic field that can induce a change in efflux is proportional to a product of LGF density and an index, 2n + 1, where n = 0,1. These phenomenological findings may provide a basis for evaluating the apparent lack of reproducibility of biological effects caused by low-intensity extremely-low-frequency (ELF) electromagnetic signals. In future investigations of this phenomenon, the LGF vector should be explicitly described. If the underlying mechanism involves a general property of tissue, then research conducted in the ambient electromagnetic environment (50/60 Hz) may be subjected to unnoticed and uncontrolled influences, depending on the density of the LGF.

361 citations

Journal ArticleDOI
TL;DR: It is illustrated how environmental tobacco smoke, outdoor air pollution, and climate change may act as environmental risk factors for the development of asthma and mechanistic explanations for how some of these effects can occur are provided.
Abstract: Asthma is a multifactorial airway disease that arises from a relatively common genetic background interphased with exposures to allergens and airborne irritants. The rapid rise in asthma over the past three decades in Western societies has been attributed to numerous diverse factors, including increased awareness of the disease, altered lifestyle and activity patterns, and ill-defined changes in environmental exposures. It is well accepted that persons with asthma are more sensitive than persons without asthma to air pollutants such as cigarette smoke, traffic emissions, and photochemical smog components. It has also been demonstrated that exposure to a mix of allergens and irritants can at times promote the development phase (induction) of the disease. Experimental evidence suggests that complex organic molecules from diesel exhaust may act as allergic adjuvants through the production of oxidative stress in airway cells. It also seems that climate change is increasing the abundance of aeroallergens such as pollen, which may result in greater incidence or severity of allergic diseases. In this review we illustrate how environmental tobacco smoke, outdoor air pollution, and climate change may act as environmental risk factors for the development of asthma and provide mechanistic explanations for how some of these effects can occur.

360 citations

Journal ArticleDOI
TL;DR: In this article, the authors examine the concept and implementation of sustainable transport in the urban context and identify four emerging areas of innovation: New Mobility, City Logistics, Intelligent System Management, and Livability.

359 citations

Journal ArticleDOI
TL;DR: Four new lines of research comprise compelling evidence that exposures to Pb have adverse effects on the nervous system, that environmental factors increase nervous system susceptibility to P b, and that exposures in early life may cause neurodegeneration in later life.

359 citations


Authors

Showing all 13926 results

NameH-indexPapersCitations
Joel Schwartz1831149109985
Timothy A. Springer167669122421
Chien-Jen Chen12865566360
Matthew W. Gillman12652955835
J. D. Hansen12297576198
Dionysios D. Dionysiou11667548449
John P. Giesy114116262790
Douglas W. Dockery10524457461
Charles P. Gerba10269235871
David A. Savitz9957232947
Stephen Polasky9935459148
Judith C. Chow9642732632
Diane R. Gold9544330717
Scott L. Zeger9537778179
Rajender S. Varma9567237083
Network Information
Related Institutions (5)
Research Triangle Park
35.8K papers, 1.6M citations

89% related

Pacific Northwest National Laboratory
27.9K papers, 1.1M citations

87% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

86% related

Leibniz Association
35.6K papers, 1M citations

85% related

Oregon State University
64K papers, 2.6M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202356
202279
2021780
2020787
2019852
2018929