scispace - formally typeset
Search or ask a question
Institution

United States Fish and Wildlife Service

GovernmentFalls Church, Virginia, United States
About: United States Fish and Wildlife Service is a government organization based out in Falls Church, Virginia, United States. It is known for research contribution in the topics: Population & Trout. The organization has 5370 authors who have published 8679 publications receiving 264075 citations. The organization is also known as: U.S. Fish & Wildlife Service & U.S. Fish and Wildlife Service.


Papers
More filters
Journal ArticleDOI
01 Aug 2002-Ecology
TL;DR: In this paper, a model and likelihood-based method for estimating site occupancy rates when detection probabilities are 0.3 was proposed for American toads (Bufo americanus) and spring peepers (Pseudacris crucifer).
Abstract: Nondetection of a species at a site does not imply that the species is absent unless the probability of detection is 1. We propose a model and likelihood-based method for estimating site occupancy rates when detection probabilities are 0.3). We estimated site occupancy rates for two anuran species at 32 wetland sites in Maryland, USA, from data collected during 2000 as part of an amphibian monitoring program, Frogwatch USA. Site occupancy rates were estimated as 0.49 for American toads (Bufo americanus), a 44% increase over the proportion of sites at which they were actually observed, and as 0.85 for spring peepers (Pseudacris crucifer), slightly above the observed proportion of 0.83.

3,918 citations

Journal ArticleDOI
04 Aug 1989-Science
TL;DR: Surveys of recent intentional releases of native birds and mammals to the wild in Australia, Canada, Hawaii, New Zealand, and the United States were conducted to document current activities, identify factors associated with success, and suggest guidelines for enhancing future work.
Abstract: Surveys of recent (1973 to 1986) intentional releases of native birds and mammals to the wild in Australia, Canada, Hawaii, New Zealand, and the United States were conducted to document current activities, identify factors associated with success, and suggest guidelines for enhancing future work. Nearly 700 translocations were conducted each year. Native game species constituted 90 percent of translocations and were more successful (86 percent) than were translocations of threatened, endangered, or sensitive species (46 percent). Knowledge of habitat quality, location of release area within the species range, number of animals released, program length, and reproductive traits allowed correct classification of 81 percent of observed translocations as successful or not.

1,774 citations

Journal ArticleDOI
TL;DR: This work provides a categorization of hybridization to help guide management decisions and recognizes that nearly every situation involving hybridization is different enough that general rules are not likely to be effective.
Abstract: Rates of hybridization and introgression are increasing dramatically worldwide because of translocations of organisms and habitat modifications by humans. Hybridization has contributed to the extinction of many species through direct and indirect means. However, recent studies have found that natural hybridization has played an important role in the evolution of many plant and animal taxa. Determining whether hybridization is natural or anthropogenic is crucial for conservation, but is often difficult to achieve. Controversy has surrounded the setting of appropriate conservation policies to deal with hybridization and introgression. Any policy that deals with hybrids must be flexible and must recognize that nearly every situation involving hybridization is different enough that general rules are not likely to be effective. We provide a categorization of hybridization to help guide management decisions

1,649 citations

Journal ArticleDOI
TL;DR: The conditions in which kelp forests develop globally and where, why and at what rate they become deforested are reviewed and overfishing appears to be the greatest manageable threat to kelp forest ecosystems over the 2025 time horizon.
Abstract: Kelp forests are phyletically diverse, structurally complex and highly productive components of coldwater rocky marine coastlines. This paper reviews the conditions in which kelp forests develop globally and where, why and at what rate they become deforested. The ecology and long archaeological history of kelp forests are examined through case studies from southern California, the Aleutian Islands and the western North Atlantic, well-studied locations that represent the widest possible range in kelp forest biodiversity. Global distribution of kelp forests is physiologically constrained by light at high latitudes and by nutrients, warm temperatures and other macrophytes at low latitudes. Within mid-latitude belts (roughly 40–60° latitude in both hemispheres) well-developed kelp forests are most threatened by herbivory, usually from sea urchins. Overfishing and extirpation of highly valued vertebrate apex predators often triggered herbivore population increases, leading to widespread kelp deforestation. Such deforestations have the most profound and lasting impacts on species-depauperate systems, such as those in Alaska and the western North Atlantic. Globally urchin-induced deforestation has been increasing over the past 2–3 decades. Continued fishing down of coastal food webs has resulted in shifting harvesting targets from apex predators to their invertebrate prey, including kelp-grazing herbivores. The recent global expansion of sea urchin harvesting has led to the widespread extirpation of this herbivore, and kelp forests have returned in some locations but, for the first time, these forests are devoid of vertebrate apex predators. In the western North Atlantic, large predatory crabs have recently filled this void and they have become the new apex predator in this system. Similar shifts from fish- to crab-dominance may have occurred in coastal zones of the United Kingdom and Japan, where large predatory finfish were extirpated long ago. Three North American case studies of kelp forests were examined to determine their long history with humans and project the status of future kelp forests to the year 2025. Fishing impacts on kelp forest systems have been both profound and much longer in duration than previously thought. Archaeological data suggest that coastal peoples exploited kelp forest organisms for thousands of years, occasionally resulting in localized losses of apex predators, outbreaks of sea urchin populations and probably small-scale deforestation. Over the past two centuries, commercial exploitation for export led to the extirpation of sea urchin predators, such as the sea otter in the North Pacific and predatory fishes like the cod in the North Atlantic. The large-scale removal of predators for export markets increased sea urchin abundances and promoted the decline of kelp forests over vast areas. Despite southern California having one of the longest known associations with coastal kelp forests, widespread deforestation is rare. It is possible that functional redundancies among predators and herbivores make this most diverse system most stable. Such biodiverse kelp forests may also resist invasion from non-native species. In the species-depauperate western North Atlantic, introduced algal competitors carpet the benthos and threaten future kelp dominance. There, other non-native herbivores and predators have become established and dominant components of this system. Climate changes have had measurable impacts on kelp forest ecosystems and efforts to control the emission of greenhouse gasses should be a global priority. However, overfishing appears to be the greatest manageable threat to kelp forest ecosystems over the 2025 time horizon. Management should focus on minimizing fishing impacts and restoring populations of functionally important species in these systems.

1,583 citations

Journal ArticleDOI
TL;DR: A class of models (N-mixture models) which allow for estimation of population size from site-specific population sizes, N, as independent random variables distributed according to some mixing distribution (e.g., Poisson).
Abstract: Spatial replication is a common theme in count surveys of animals. Such surveys often generate sparse count data from which it is difficult to estimate population size while formally accounting for detection probability. In this article, I describe a class of models (N-mixture models) which allow for estimation of population size from such data. The key idea is to view site-specific population sizes, N, as independent random variables distributed according to some mixing distribution (e.g., Poisson). Prior parameters are estimated from the marginal likelihood of the data, having integrated over the prior distribution for N. Carroll and Lombard (1985, Journal of American Statistical Association 80, 423-426) proposed a class of estimators based on mixing over a prior distribution for detection probability. Their estimator can be applied in limited settings, but is sensitive to prior parameter values that are fixed a priori. Spatial replication provides additional information regarding the parameters of the prior distribution on N that is exploited by the N-mixture models and which leads to reasonable estimates of abundance from sparse data. A simulation study demonstrates superior operating characteristics (bias, confidence interval coverage) of the N-mixture estimator compared to the Caroll and Lombard estimator. Both estimators are applied to point count data on six species of birds illustrating the sensitivity to choice of prior on p and substantially different estimates of abundance as a consequence.

1,291 citations


Authors

Showing all 5383 results

NameH-indexPapersCitations
Kurunthachalam Kannan12682059886
John P. Giesy114116262790
Keith A. Hobson10365341300
David E. Anderson96523103905
Ronald A. Hites8936529201
Robert J. Letcher8041122778
Thomas H. Kunz7728020673
Thomas E. Martin7620220802
J. Andrew Royle7522622480
Keith R. Solomon7435922283
Kenneth P. Burnham71155103288
Scott A. Mabury7122518776
James A. Estes7019430528
Kenneth H. Pollock7025620366
John B. Loomis6936018169
Network Information
Related Institutions (5)
Fisheries and Oceans Canada
6.2K papers, 223K citations

90% related

National Marine Fisheries Service
7K papers, 305K citations

90% related

University of Maryland Center for Environmental Science
3.5K papers, 202.4K citations

87% related

Virginia Institute of Marine Science
3.1K papers, 144.5K citations

87% related

United States Forest Service
21.8K papers, 959.1K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202219
2021477
2020420
2019377
2018369