scispace - formally typeset
Search or ask a question
Institution

United States Geological Survey

GovernmentReston, Virginia, United States
About: United States Geological Survey is a government organization based out in Reston, Virginia, United States. It is known for research contribution in the topics: Population & Groundwater. The organization has 17899 authors who have published 51097 publications receiving 2479125 citations. The organization is also known as: USGS & US Geological Survey.


Papers
More filters
OtherDOI
TL;DR: The largest known deposit is the Green River oil shale in western United States as mentioned in this paper, which contains an estimated 215 billion tons of in-place shale oil (1.5 trillion U.S. barrels).
Abstract: Oil-shale deposits are found in many parts of the world. They range in age from Cambrian to Tertiary and were formed in a variety of marine, continental, and lacustine depositional environments. The largest known deposit is the Green River oil shale in western United States. It contains an estimated 215 billion tons of in-place shale oil (1.5 trillion U.S. barrels). Total resources of a selected group of oil-shale deposits in 33 countries is estimated at 411 billion tons of in-place shale oil which is equivalent to 2.9 trillion U.S. barrels of shale oil. This figure is very conservative because several deposits mentioned herein have not been explored sufficiently to make accurate estimates and other deposits were not included in this survey.

483 citations

Journal ArticleDOI
01 Mar 2017-Nature
TL;DR: Observations from ferruginous sedimentary rocks from the Nuvvuagittuq belt in Quebec, Canada are consistent with an oxidized biomass and provide evidence for biological activity in submarine-hydrothermal environments more than 3,770 million years ago.
Abstract: Although it is not known when or where life on Earth began, some of the earliest habitable environments may have been submarine-hydrothermal vents. Here we describe putative fossilized microorganisms that are at least 3,770 million and possibly 4,280 million years old in ferruginous sedimentary rocks, interpreted as seafloor-hydrothermal vent-related precipitates, from the Nuvvuagittuq belt in Quebec, Canada. These structures occur as micrometre-scale haematite tubes and filaments with morphologies and mineral assemblages similar to those of filamentous microorganisms from modern hydrothermal vent precipitates and analogous microfossils in younger rocks. The Nuvvuagittuq rocks contain isotopically light carbon in carbonate and carbonaceous material, which occurs as graphitic inclusions in diagenetic carbonate rosettes, apatite blades intergrown among carbonate rosettes and magnetite-haematite granules, and is associated with carbonate in direct contact with the putative microfossils. Collectively, these observations are consistent with an oxidized biomass and provide evidence for biological activity in submarine-hydrothermal environments more than 3,770 million years ago.

482 citations

Journal ArticleDOI
Roger C. Wiens1, Sylvestre Maurice2, Sylvestre Maurice3, B. L. Barraclough4, B. L. Barraclough1, Muriel Saccoccio5, Walter Barkley1, James F. Bell6, S. Bender1, S. Bender4, John D. Bernardin1, Diana L. Blaney7, Jennifer G. Blank8, Marc Bouyé2, Marc Bouyé3, Nathan T. Bridges9, Nathan K. Bultman1, Phillippe Caïs10, Robert C. Clanton1, Benton C. Clark11, Samuel M. Clegg1, Agnès Cousin2, Agnès Cousin3, David A. Cremers, Alain Cros2, Alain Cros3, Lauren DeFlores7, Dorothea Delapp1, Robert Dingler1, Claude d’Uston2, Claude d’Uston3, M. Darby Dyar12, Tom Elliott7, Don Enemark1, Cécile Fabre, Mike Flores1, Olivier Forni3, Olivier Forni2, Olivier Gasnault2, Olivier Gasnault3, Thomas Chatters Hale1, Charles C. Hays6, K. E. Herkenhoff13, Ed Kan7, L. E. Kirkland14, Driss Kouach2, Driss Kouach3, David Landis15, Yves Langevin16, Nina Lanza17, Nina Lanza1, Frank LaRocca18, Jérémie Lasue2, Jérémie Lasue1, Jérémie Lasue3, Joseph Latino1, Daniel Limonadi7, Chris Lindensmith7, Cynthia K. Little1, Nicolas Mangold19, Gérard Manhès20, Patrick Mauchien21, Christopher P. McKay8, Edward A. Miller7, Joe Mooney, Richard V. Morris, Leland Jean Morrison1, T. Nelson1, Horton E. Newsom17, Ann Ollila17, Melanie N. Ott18, L. Parès3, L. Parès2, R. Perez5, Franck Poitrasson2, Franck Poitrasson3, Cheryl Provost, Joseph W. Reiter7, Tom Roberts7, Frank Patrick Romero1, V. Sautter, Steven Salazar1, John J. Simmonds7, Ralph Stiglich1, S. A. Storms1, Nicolas Striebig2, Nicolas Striebig3, Jean Jacques Thocaven3, Jean Jacques Thocaven2, Tanner Trujillo1, Mike Ulibarri1, David T. Vaniman1, David T. Vaniman4, Noah Warner7, Rob Waterbury, Robert Whitaker1, James Witt1, Belinda Wong-Swanson 
TL;DR: The first laser-induced breakdown spectrometer (LIBS) was used on the Mars Science Laboratory (MSL) rover Curiosity for remote compositional information using the first LIBS on a planetary mission, and provided sample texture and morphology data using a remote micro-imager.
Abstract: The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover Curiosity provides remote compositional information using the first laser-induced breakdown spectrometer (LIBS) on a planetary mission, and provides sample texture and morphology data using a remote micro-imager (RMI). Overall, ChemCam supports MSL with five capabilities: remote classification of rock and soil characteristics; quantitative elemental compositions including light elements like hydrogen and some elements to which LIBS is uniquely sensitive (e.g., Li, Be, Rb, Sr, Ba); remote removal of surface dust and depth profiling through surface coatings; context imaging; and passive spectroscopy over the 240–905 nm range. ChemCam is built in two sections: The mast unit, consisting of a laser, telescope, RMI, and associated electronics, resides on the rover’s mast, and is described in a companion paper. ChemCam’s body unit, which is mounted in the body of the rover, comprises an optical demultiplexer, three spectrometers, detectors, their coolers, and associated electronics and data handling logic. Additional instrument components include a 6 m optical fiber which transfers the LIBS light from the telescope to the body unit, and a set of onboard calibration targets. ChemCam was integrated and tested at Los Alamos National Laboratory where it also underwent LIBS calibration with 69 geological standards prior to integration with the rover. Post-integration testing used coordinated mast and instrument commands, including LIBS line scans on rock targets during system-level thermal-vacuum tests. In this paper we describe the body unit, optical fiber, and calibration targets, and the assembly, testing, and verification of the instrument prior to launch.

482 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a synthesis of common terminology and explain a rationale and framework for distinguishing among the components of ecosystem service delivery, including: an ecosystem's capacity to produce services; ecological pressures that interfere with the ecosystem's ability to provide the services; societal demand for the service; and flow of the service to people.

481 citations

Journal ArticleDOI
01 Jun 1998-Geology
TL;DR: In this article, the authors estimate that lakes are currently accumulating organic carbon (OC) at an estimated annual rate of about 42 Tg�yr −1, and most of the OC in all but the most oligotrophic of these lakes is autochthonous, produced by primary production in the lakes.
Abstract: Globally, lakes are currently accumulating organic carbon (OC) at an estimated annual rate of about 42 Tgṁyr −1 . Most of the OC in all but the most oligotrophic of these lakes is autochthonous, produced by primary production in the lakes. The sediments of reservoirs accumulate an additional 160 Tg annually, and peatlands contribute 96 Tg annually. These three carbon pools collectively cover less than 2% of the Earth9s surface and constitute a carbon sink of about 300 Tgṁyr −1 . Although the oceans cover 71% of the Earth9s surface, they accumulate OC at a rate of only about 100 Tgṁyr −1 .

479 citations


Authors

Showing all 18026 results

NameH-indexPapersCitations
Derek R. Lovley16858295315
Steven Williams144137586712
Thomas J. Smith1401775113919
Jillian F. Banfield12756260687
Kurunthachalam Kannan12682059886
J. D. Hansen12297576198
John P. Giesy114116262790
David Pollard10843839550
Alan Cooper10874645772
Gordon E. Brown10045432152
Gerald Schubert9861434505
Peng Li95154845198
Vipin Kumar9561459034
Susan E. Trumbore9533734844
Alfred S. McEwen9262428730
Network Information
Related Institutions (5)
Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

93% related

University of Alaska Fairbanks
17K papers, 750.5K citations

91% related

Scripps Institution of Oceanography
7.8K papers, 487.4K citations

90% related

Woods Hole Oceanographic Institution
18.3K papers, 1.2M citations

89% related

Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202367
2022224
20212,132
20202,082
20191,914
20181,920