scispace - formally typeset
Search or ask a question
Institution

United States Geological Survey

GovernmentReston, Virginia, United States
About: United States Geological Survey is a government organization based out in Reston, Virginia, United States. It is known for research contribution in the topics: Population & Groundwater. The organization has 17899 authors who have published 51097 publications receiving 2479125 citations. The organization is also known as: USGS & US Geological Survey.


Papers
More filters
Journal ArticleDOI
TL;DR: This review summarizes the results of molecular investigations of denitrifier communities in natural environments and provides a framework for developing future research for addressing connections between denItrifier community structure and function.
Abstract: The advent of molecular techniques has improved our understanding of the microbial communities responsible for denitrification and is beginning to address their role in controlling denitrification processes. There is a large diversity of bacteria, archaea, and fungi capable of denitrification, and their community composition is structured by long-term environmental drivers. The range of temperature and moisture conditions, substrate availability, competition, and disturbances have long-lasting legacies on denitrifier community structure. These communities may differ in physiology, environmental tolerances to pH and O2, growth rate, and enzyme kinetics. Although factors such as O2, pH, C availability, and NO3- pools affect instantaneous rates, these drivers act through the biotic community. This review summarizes the results of molecular investigations of denitrifier communities in natural environments and provides a framework for developing future research for addressing connections between denitrifier community structure and function.

477 citations

Journal ArticleDOI
TL;DR: In this paper, the TES instrument on the Mars Global Surveyor (MGS) mission has discovered a remarkable accumulation of crystalline hematite ((alpha-Fe2O3) that covers an area with very sharp boundaries approximately 350 by 350-750 km in size centered near 2 S latitude between 0 and 5 W longitude (Sinus Meridiani).
Abstract: The Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) mission has discovered a remarkable accumulation of crystalline hematite ((alpha-Fe2O3) that covers an area with very sharp boundaries approximately 350 by 350-750 km in size centered near 2 S latitude between 0 and 5 W longitude (Sinus Meridiani). Crystalline hematite is uniquely identified by the presence of fundamental vibrational absorption features centered near 300, 450, and >525/cm, and by the absence of silicate fundamentals in the 1000/cm region. Spectral features resulting from atmospheric CO2, dust, and water ice were removed using a radiative transfer model. The spectral properties unique to Sinus Meridiani were emphasized by removing the average spectrum of the surrounding region. The depth and shape of the hematite fundamental bands show that the hematite is crystalline and relatively coarse grained (>5-10 micron). Diameters up to and greater than 100s of micrometers are permitted within the instrumental noise and natural variability of hematite spectra. Hematite particles 30 micron in diameter to 40-60% for unpacked 10 micron powders. The hematite in Sinus Meridiani is thus distinct from the fine-grained (diameter <5-10 micron), red, crystalline hematite considered, on the basis of visible, near-IR data, to be a minor spectral component in Martian bright regions like Olympus-Amazonis. Sinus Meridiani hematite is closely associated with a smooth, layered, friable surface that is interpreted to be sedimentary in origin. This material may be the uppermost surface in the region, indicating that it could be a late-stage sedimentary unit, or it could be a layered portion of the heavily cratered plains units. We consider five possible mechanisms for the formation of coarse-grained, crystalline hematite. These processes fall into two classes depending on whether they require a significant amount of near-surface water: (1) chemical precipitation that includes origin by (a) precipitation from oxygenated, Fe-rich water (iron formations), (b) hydrothermal extraction and crystal growth.

477 citations

Journal ArticleDOI
29 May 2020-Science
TL;DR: The authors show that shifts in forest dynamics are already occurring, and the emerging pattern is that global forests are tending toward younger stands with faster turnover as old-growth forest with stable dynamics are dwindling.
Abstract: Forest dynamics arise from the interplay of environmental drivers and disturbances with the demographic processes of recruitment, growth, and mortality, subsequently driving biomass and species composition. However, forest disturbances and subsequent recovery are shifting with global changes in climate and land use, altering these dynamics. Changes in environmental drivers, land use, and disturbance regimes are forcing forests toward younger, shorter stands. Rising carbon dioxide, acclimation, adaptation, and migration can influence these impacts. Recent developments in Earth system models support increasingly realistic simulations of vegetation dynamics. In parallel, emerging remote sensing datasets promise qualitatively new and more abundant data on the underlying processes and consequences for vegetation structure. When combined, these advances hold promise for improving the scientific understanding of changes in vegetation demographics and disturbances.

476 citations

Journal ArticleDOI
TL;DR: In this paper, it is proposed that the rapid release of water under great pressure from deeply buried aquifers is responsible for the formation of the Martian channels suggestive of catastrophic flooding (outflow channels).
Abstract: It is proposed that the rapid release of water under great pressure from deeply buried aquifers is responsible for the formation of the Martian channels suggestive of catastrophic flooding (outflow channels). Fine channels in the Martian surface suggest the presence of surface water early in the history of the planet, which would have entered the ground water system through the porous near-surface rocks. Subsequent global cooling would have trapped the ground water under a thick permafrost layer and formed a system of confined aquifers. High pore pressures within the aquifers are considered to have triggered the breakout of water from the aquifers at rates of from 10 to the 5th to 10 to the 7th cu m/sec, which would be prevented from reentering the ground water system by the layer of permafrost. Outflow from the aquifer is also considered to have caused the undermining of adjacent areas and the collapse of the surface to form areas of chaos, often associated with channels.

475 citations

Journal ArticleDOI
TL;DR: In this article, the authors compared sampling results of eDNA-based methods for detecting aquatic species with field protocols and precision of the resulting estimates, but with little evaluation of field protocols or precision of results.
Abstract: Environmental DNA (eDNA) methods for detecting aquatic species are advancing rapidly, but with little evaluation of field protocols or precision of resulting estimates. We compared sampling results...

475 citations


Authors

Showing all 18026 results

NameH-indexPapersCitations
Derek R. Lovley16858295315
Steven Williams144137586712
Thomas J. Smith1401775113919
Jillian F. Banfield12756260687
Kurunthachalam Kannan12682059886
J. D. Hansen12297576198
John P. Giesy114116262790
David Pollard10843839550
Alan Cooper10874645772
Gordon E. Brown10045432152
Gerald Schubert9861434505
Peng Li95154845198
Vipin Kumar9561459034
Susan E. Trumbore9533734844
Alfred S. McEwen9262428730
Network Information
Related Institutions (5)
Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

93% related

University of Alaska Fairbanks
17K papers, 750.5K citations

91% related

Scripps Institution of Oceanography
7.8K papers, 487.4K citations

90% related

Woods Hole Oceanographic Institution
18.3K papers, 1.2M citations

89% related

Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202367
2022224
20212,132
20202,082
20191,914
20181,920