scispace - formally typeset
Search or ask a question
Institution

United States Geological Survey

GovernmentReston, Virginia, United States
About: United States Geological Survey is a government organization based out in Reston, Virginia, United States. It is known for research contribution in the topics: Population & Groundwater. The organization has 17899 authors who have published 51097 publications receiving 2479125 citations. The organization is also known as: USGS & US Geological Survey.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors deduced a thrust-fault mechanism for both the Alaskan and Chile earthquakes, which is consistent with the concept that the sectors of the Pacific rim in which they occurred are major zones of convergence along which the oceanic plates progressively underthrust the less mobile America plate.
Abstract: The 1964 Alaskan earthquake (Ms ≈ 8.4) involved a segment of the eastern Aleutian arc 800 gm long; the 1960 Chilean earthquake sequence (Ms ≈ 8.5) affected roughly 100 km of the southern Peru-Chile arc. These two major events are strikingly similar in that (1) seismicity was shallow (<70 km), the earthquake focal regions and most of the associated tectonic deformation being between the oceanic trenches and volcanic chains of the two arcs; (2) regional vertical displacements were characterized by broad asymmetric downwarps elongate parallel to the arcs with flanking zones of marked uplift on the seaward sides and minor, possibly local, uplift on the landward sides; and (3) horizontal displacements, where determined by retriangulation, involved systematic shifts in a generally seaward direction and transverse tensile strains across the zones of subsidence. Surface displacements and seismicity for both events are compatible with dislocation models involving predominantly dip-slip movement of 20 meters or more on major complex thrust faults (megathrusts) inclined at average angles of about 9° beneath the eastern Aleutian arc and perhaps 20° beneath the Peru-Chile arc. The thrust-fault mechanism deduced for both the Alaskan and Chilean earthquakes is broadly consistent with the concept that the sectors of the Pacific rim in which they occurred are major zones of convergence along which the oceanic plates progressively underthrust the less mobile America plate. Directions of convergence between lithospheric plates at these arcs as deduced primarily from paleomagnetic data are in reasonably good agreement with the observed earthquake-related deformation; the deduced rates of convergence, however, appear to be too high in the eastern Aleutian arc and too low in the southern Peru-Chile arc. Despite gross similarities in tectonic setting and the present style of earthquake-related deformation, the geologies of the continental margins in the eastern Aleutian arc and southern Peru-Chile arc differ significantly. This difference suggests that Mesozoic and Cenozoic sediments and volcanic rocks conveyed into the eastern Aleutian trench have progressively accreted to the Alaskan continental margin, whereas most or all of the material carried into the southern Peru-Chile trench has disappeared beneath the Chilean continental margin.

376 citations

Journal ArticleDOI
TL;DR: In this article, the authors compared and modeled the adsorption of selenium and other anions on a neutral to alkaline surface (amorphous iron oxyhydroxide) and an acidic surface (manganese dioxide).

376 citations

Book
01 Jan 1970
TL;DR: In this article, the environment and occurence of clay minerals, various kinds, their structures and diffraction patterns, x-ray diffraction as applied to clay mineralogy, preparation of clays for xray examination, quantitative estimation of clay mineral in a mixture.
Abstract: Clay minerals are classified and non-clay minerals in the clay fraction listed. Chapters follow on: the environment and occurence of clay minerals; various kinds, their structures and diffraction patterns; x-ray diffraction as applied to clay mineralogy; preparation of clays for x-ray examination; quantitative estimation of clay minerals in a mixture.

375 citations

Journal ArticleDOI
TL;DR: In this paper, an in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling.
Abstract: [1] An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 μM midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(II), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.

375 citations

Journal ArticleDOI
01 Aug 2001-Geology
TL;DR: In this article, it was shown that abiotic processes can fractionate the Fe isotopes to the same extent as biotic processes, and thus Fe isotope on their own do not provide an effective biosignature.
Abstract: Field and laboratory studies reveal that the mineral ferrihydrite, formed as a result of abiotic oxidation of aqueous ferrous to ferric Fe, contains Fe that is isotopically heavy relative to coexisting aqueous Fe. Because the electron transfer step of the oxidation process at pH >5 is essentially irreversible and should favor the lighter Fe isotopes in the ferric iron product, this result suggests that relatively heavy Fe isotopes are preferentially partitioned into the readily oxidized Fe(II)(OH) x (aq) species or their transition complexes prior to oxidation. The apparent Fe isotope fractionation factor, α ferrihydrite- water , depends primarily on the relative abundances of the Fe(II) (aq) species. This study demonstrates that abiotic processes can fractionate the Fe isotopes to the same extent as biotic processes, and thus Fe isotopes on their own do not provide an effective biosignature.

375 citations


Authors

Showing all 18026 results

NameH-indexPapersCitations
Derek R. Lovley16858295315
Steven Williams144137586712
Thomas J. Smith1401775113919
Jillian F. Banfield12756260687
Kurunthachalam Kannan12682059886
J. D. Hansen12297576198
John P. Giesy114116262790
David Pollard10843839550
Alan Cooper10874645772
Gordon E. Brown10045432152
Gerald Schubert9861434505
Peng Li95154845198
Vipin Kumar9561459034
Susan E. Trumbore9533734844
Alfred S. McEwen9262428730
Network Information
Related Institutions (5)
Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

93% related

University of Alaska Fairbanks
17K papers, 750.5K citations

91% related

Scripps Institution of Oceanography
7.8K papers, 487.4K citations

90% related

Woods Hole Oceanographic Institution
18.3K papers, 1.2M citations

89% related

Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202367
2022224
20212,132
20202,082
20191,914
20181,920