scispace - formally typeset
Search or ask a question
Institution

United States Geological Survey

GovernmentReston, Virginia, United States
About: United States Geological Survey is a government organization based out in Reston, Virginia, United States. It is known for research contribution in the topics: Population & Groundwater. The organization has 17899 authors who have published 51097 publications receiving 2479125 citations. The organization is also known as: USGS & US Geological Survey.
Topics: Population, Groundwater, Volcano, Aquifer, Sediment


Papers
More filters
Journal ArticleDOI
TL;DR: Influence of Dissolved Organic Matter on the Environmental Fate of Metals, Nanoparticles, and Colloids George R. Aiken,* Heileen Hsu-Kim, and Joseph N. Ryan U.S. Geological Survey.
Abstract: Influence of Dissolved Organic Matter on the Environmental Fate of Metals, Nanoparticles, and Colloids George R. Aiken,* Heileen Hsu-Kim, and Joseph N. Ryan U.S. Geological Survey, 3215 Marine Street, Boulder, Colorado 80303, United States Department of Civil and Environmental Engineering, Duke University, Box 90287, Durham, North Carolina 27708, United States Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, Colorado 80309, United States

698 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that oceanic tholeiites are either complete melts of the upper mantle or are generated from a mix of this tholeite and a magnesium-rich peridotite or dunite in proportions up to perhaps 1:4.
Abstract: Tholeiitic basalts (oceanic tholeiites) that form most of the deeply submerged volcanic features in the oceans are characterized by extremely low amounts of Ba, K, P, Pb, Sr, Th, U, and Zr as well as Fe 2 O 3 /FeO 10 in unaltered samples. Oceanic tholeiites also have rare earth abundance-distribution patterns and ratios of K/Rb (1300) and Sr 87 /Sr 86 (0.702) similar to or overlapping those of calcium-rich (basaltic) achondritic meteorites. The close compositional similarities between the oceanic tholeiites and calcium-rich achondrites indicates the relatively primitive nature of the oceanic tholeiites. In contrast, the alkali-rich basalts that cap submarine and island volcanoes are relatively enriched in Ba, K, La, Nb, P, Pb, Pb 206 , Rb, Fe 2 O 3 , Sr, Sr 87 , Ti, Th, U, and Zr; i.e . in the same elements and isotopes that are concentrated in the sialic continental crusts by factors of 5 to 1000 more than the amounts readily inferred in the upper mantle. These analytical data coupled with the field relationships indicate that the alkali-rich basalts are derivative rocks, fractionated from the oceanic tholeiites by processes of magmatic differentiation, and that the oceanic tholeiites are the principal or only primary magma generated in the upper mantle under the oceans. Studies of the abundances and compositions of continental basalts show that essentially identical tholeiitic lavas, contaminated with Si, K, and the chemically coherent trace elements and radiogenic isotopes from the sial, also have been the predominant or only magma generated in the mantle under the continents. The chemical properties of oceanic tholeiites suggest that the upper mantle probably contains less than (in parts per million): Ba, 10; K, 1000; Pb, 0.4; Rb, 10; Th, 0.2; and U, 0.1. The Sr 87 /Sr 86 must be less than 0.7015; Th/U about 2; K/Rb about 1500–2000; and Fe 2 O 3 /FeO less than 0.1. The integration of field and petrochemical data with seismic, density, and shock-wave studies suggests that the oceanic tholeiites are either complete melts of the upper mantle or are generated from a mix of this tholeiite and a magnesium-rich peridotite or dunite in proportions up to perhaps 1:4. The Mohorovicic discontinuity under the oceans appears to mark the transition downward from a largely tholeiitic oceanic crust to either tholeiite reconstituted to blueschist or greenschist or to the ultramafic residue left after expulsion of oceanic tholeiite.

698 citations

Journal ArticleDOI
TL;DR: The thinnest recognizable strata in modern eolian dune sands can be grouped into six classes as discussed by the authors : planebed laminae, rippleform laminaes, ripple-foreset crosslaminae, climbing translatent strata, grainfall lamina, and sandflow cross-strata.
Abstract: The thinnest recognizable strata in modern eolian dune sands can be grouped into six classes. They are herein named planebed laminae, rippleform laminae, ripple-foreset crosslaminae, climbing translatent strata, grainfall laminae, and sandflow cross-strata. Planebed laminae are formed by tractional deposition on smooth surfaces at high wind velocities. They are very rare in the deposits studied. Grainfall laminae are also formed on smooth surfaces, largely by grainfall deposition in zones of flow separation. They are much more common than planebed laminae, which they closely resemble. Eolian climbing-ripple structures are composed primarily of climbing trans-latent strata, each of which is the depositional product of a single climbing ripple. Climbing translatent strata that formed at relatively high or supercritical angles of ripple climb are typically accompanied by rippleform laminae, which are wavy layers parallel to the rippled depositional surfaces. Ripple-foreset crosslaminae, which are incomplete rippleform laminae produced when the angle of ripple climb is relatively low or subcritical, are rarely visible in eolian sands. Sandflow cross-strata are formed by the avalanching of noncohesive sand on dune slipfaces. Their form varies with slipface height and with other factors.

697 citations

Journal ArticleDOI
TL;DR: In this paper, the kinetics of As(V) adsorption by ferrihydrite was investigated in coprecipitation and postsynthesis adaption experiments conducted in the pH range 7.5-9.0.

697 citations

Journal ArticleDOI
TL;DR: Mikumo et al. as discussed by the authors used a plane-strain model with spatially varying properties to demonstrate that accelerating slip precedes instability and becomes localized to a fault patch, and the dimensions of the fault patch follow scaling relations for the minimum critical length for unstable fault slip.

695 citations


Authors

Showing all 18026 results

NameH-indexPapersCitations
Derek R. Lovley16858295315
Steven Williams144137586712
Thomas J. Smith1401775113919
Jillian F. Banfield12756260687
Kurunthachalam Kannan12682059886
J. D. Hansen12297576198
John P. Giesy114116262790
David Pollard10843839550
Alan Cooper10874645772
Gordon E. Brown10045432152
Gerald Schubert9861434505
Peng Li95154845198
Vipin Kumar9561459034
Susan E. Trumbore9533734844
Alfred S. McEwen9262428730
Network Information
Related Institutions (5)
Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

93% related

University of Alaska Fairbanks
17K papers, 750.5K citations

91% related

Scripps Institution of Oceanography
7.8K papers, 487.4K citations

90% related

Woods Hole Oceanographic Institution
18.3K papers, 1.2M citations

89% related

Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202367
2022224
20212,132
20202,082
20191,914
20181,920