scispace - formally typeset
Search or ask a question
Institution

United States Geological Survey

GovernmentReston, Virginia, United States
About: United States Geological Survey is a government organization based out in Reston, Virginia, United States. It is known for research contribution in the topics: Population & Groundwater. The organization has 17899 authors who have published 51097 publications receiving 2479125 citations. The organization is also known as: USGS & US Geological Survey.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) to detect alteration minerals in the Noachian terrain west of the Isidis basin.
Abstract: The Noachian terrain west of the Isidis basin hosts a diverse collection of alteration minerals in rocks comprising varied geomorphic units within a 100,000 km2 region in and near the Nili Fossae. Prior investigations in this region by the Observatoire pour l'Mineralogie, l'Eau, les Glaces, et l'Activite (OMEGA) instrument on Mars Express revealed large exposures of both mafic minerals and iron magnesium phyllosilicates in stratigraphic context. Expanding on the discoveries of OMEGA, the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard the Mars Reconnaissance Orbiter (MRO) has found more spatially widespread and mineralogically diverse alteration minerals than previously realized, which represent multiple aqueous environments. Using CRISM near-infrared spectral data, we detail the basis for identification of iron and magnesium smectites (including both nontronite and more Mg-rich varieties), chlorite, prehnite, serpentine, kaolinite, potassium mica (illite or muscovite), hydrated (opaline) silica, the sodium zeolite analcime, and magnesium carbonate. The detection of serpentine and analcime on Mars is reported here for the first time. We detail the geomorphic context of these minerals using data from high-resolution imagers onboard MRO in conjunction with CRISM. We find that the distribution of alteration minerals is not homogeneous; rather, they occur in provinces with distinctive assemblages of alteration minerals. Key findings are (1) a distinctive stratigraphy, in and around the Nili Fossae, of kaolinite and magnesium carbonate in bedrock units always overlying Fe/Mg smectites and (2) evidence for mineral phases and assemblages indicative of low-grade metamorphic or hydrothermal aqueous alteration in cratered terrains. The alteration minerals around the Nili Fossae are more typical of those resulting from neutral to alkaline conditions rather than acidic conditions, which appear to have dominated much of Mars. Moreover, the mineralogic diversity and geologic context of alteration minerals found in the region around the Nili Fossae indicates several episodes of aqueous activity in multiple distinct environments.

598 citations

Journal ArticleDOI
TL;DR: In many agricultural regions, more than 80% of some catchment basins may be drained by surface ditches and subsurface drain pipes (tiles), which has significant effects on channel morphology, instream habitats for aquatic organisms, floodplain and riparian connectivity, sediment dynamics, and nutrient cycling as discussed by the authors.
Abstract: The extensive development of surface and subsurface drainage systems to facilitate agricultural production throughout North America has significantly altered the hydrology of landscapes compared to historical conditions. Drainage has transformed nutrient and hydrologic dynamics, structure, function, quantity, and configuration of stream and wetland ecosystems. In many agricultural regions, more than 80% of some catchment basins may be drained by surface ditches and subsurface drain pipes (tiles). Natural channels have been straightened and deepened for surface drainage ditches with significant effects on channel morphology, instream habitats for aquatic organisms, floodplain and riparian connectivity, sediment dynamics, and nutrient cycling. The connection of formerly isolated wetland basins to extensive networks of surface drainage and the construction of main channel ditches through millions of acres of formerly low-lying marsh or wet prairie, where no defined channel may have previously existed, have r...

596 citations

Journal ArticleDOI
TL;DR: An exhaustive review and reanalysis of geological, paleontological, and molecular records converge upon a cohesive narrative of gradually emerging land and constricting seaways, with formation of the Isthmus of Panama sensu stricto around 2.8 Ma.
Abstract: The formation of the Isthmus of Panama stands as one of the greatest natural events of the Cenozoic, driving profound biotic transformations on land and in the oceans. Some recent studies suggest that the Isthmus formed many millions of years earlier than the widely recognized age of approximately 3 million years ago (Ma), a result that if true would revolutionize our understanding of environmental, ecological, and evolutionary change across the Americas. To bring clarity to the question of when the Isthmus of Panama formed, we provide an exhaustive review and reanalysis of geological, paleontological, and molecular records. These independent lines of evidence converge upon a cohesive narrative of gradually emerging land and constricting seaways, with formation of the Isthmus of Panama sensu stricto around 2.8 Ma. The evidence used to support an older isthmus is inconclusive, and we caution against the uncritical acceptance of an isthmus before the Pliocene.

595 citations

Journal ArticleDOI
TL;DR: In this paper, seasonal variability in the C-N stable isotope ratios of plants collected across the habitat mosaic of San Francisco Bay, its marshes, and its tributary river system was reported.
Abstract: We report measurements of seasonal variability in the C-N stable isotope ratios of plants collected across the habitat mosaic of San Francisco Bay, its marshes, and its tributary river system. Analyses of 868 plant samples were binned into 10 groups (e.g., terrestrial riparian, freshwater phytoplankton, salt marsh) to determine whether C-N isotopes can be used as biomarkers for tracing the origins of organic matter in this river‐marsh‐estuary complex. Variability of d 13 C and d 15 N was high (;5‐10‰) within each plant group, and we identified three modes of variability: (1) between species and their microhabitats, (2) over annual cycles of plant growth and senescence, and (3) between living and decomposing biomass. These modes of within-group variability obscure any sourcespecific isotopic signatures, confounding the application of C-N isotopes for identifying the origins of organic matter. A second confounding factor was large dissimilarity between the d 13 C-d 15 N of primary producers and the organicmatter pools in the seston and sediments. Both confounding factors impede the application of C-N isotopes to reveal the food supply to primary consumers in ecosystems supporting diverse autotrophs and where the isotopic composition of organic matter has been transformed and become distinct from that of its parent plant sources. Our results support the advice of others: variability of C-N stable isotopes within all organic-matter pools is high and must be considered in applications of these isotopes to trace trophic linkages from primary producers to primary consumers. Isotope-based approaches are perhaps most powerful when used to complement other tools, such as molecular biomarkers, bioassays, direct measures of production, and compilations of organic-matter budgets.

595 citations

Journal ArticleDOI
TL;DR: The logic underpinning the approach is explained, the evolution of the regional mapping process is discussed, and examples of how the ecoregions were distinguished at each hierarchical level are provided.
Abstract: A map of ecological regions of the conterminous United States, first published in 1987, has been greatly refined and expanded into a hierarchical spatial framework in response to user needs, particularly by state resource management agencies. In collaboration with scientists and resource managers from numerous agencies and institutions in the United States, Mexico, and Canada, the framework has been expanded to cover North America, and the original ecoregions (now termed Level III) have been refined, subdivided, and aggregated to identify coarser as well as more detailed spatial units. The most generalized units (Level I) define 10 ecoregions in the conterminous U.S., while the finest-scale units (Level IV) identify 967 ecoregions. In this paper, we explain the logic underpinning the approach, discuss the evolution of the regional mapping process, and provide examples of how the ecoregions were distinguished at each hierarchical level. The variety of applications of the ecoregion framework illustrates its utility in resource assessment and management.

595 citations


Authors

Showing all 18026 results

NameH-indexPapersCitations
Derek R. Lovley16858295315
Steven Williams144137586712
Thomas J. Smith1401775113919
Jillian F. Banfield12756260687
Kurunthachalam Kannan12682059886
J. D. Hansen12297576198
John P. Giesy114116262790
David Pollard10843839550
Alan Cooper10874645772
Gordon E. Brown10045432152
Gerald Schubert9861434505
Peng Li95154845198
Vipin Kumar9561459034
Susan E. Trumbore9533734844
Alfred S. McEwen9262428730
Network Information
Related Institutions (5)
Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

93% related

University of Alaska Fairbanks
17K papers, 750.5K citations

91% related

Scripps Institution of Oceanography
7.8K papers, 487.4K citations

90% related

Woods Hole Oceanographic Institution
18.3K papers, 1.2M citations

89% related

Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202367
2022224
20212,132
20202,082
20191,914
20181,920