scispace - formally typeset
Search or ask a question
Institution

United States Naval Research Laboratory

FacilityWashington D.C., District of Columbia, United States
About: United States Naval Research Laboratory is a facility organization based out in Washington D.C., District of Columbia, United States. It is known for research contribution in the topics: Laser & Optical fiber. The organization has 17395 authors who have published 45424 publications receiving 1583174 citations. The organization is also known as: NRL & Naval Research Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: Experimental results show that in most cases the techniques developed in this paper are readily adaptable to real-time image processing.
Abstract: Computational techniques involving contrast enhancement and noise filtering on two-dimensional image arrays are developed based on their local mean and variance. These algorithms are nonrecursive and do not require the use of any kind of transform. They share the same characteristics in that each pixel is processed independently. Consequently, this approach has an obvious advantage when used in real-time digital image processing applications and where a parallel processor can be used. For both the additive and multiplicative cases, the a priori mean and variance of each pixel is derived from its local mean and variance. Then, the minimum mean-square error estimator in its simplest form is applied to obtain the noise filtering algorithms. For multiplicative noise a statistical optimal linear approximation is made. Experimental results show that such an assumption yields a very effective filtering algorithm. Examples on images containing 256 × 256 pixels are given. Results show that in most cases the techniques developed in this paper are readily adaptable to real-time image processing.

2,701 citations

Journal ArticleDOI
TL;DR: Considering future bottlenecks in raw materials, options for the recycling of rare-earth intermetallics for hard magnets will be discussed and their potential impact on energy efficiency is discussed.
Abstract: A new energy paradigm, consisting of greater reliance on renewable energy sources and increased concern for energy effi ciency in the total energy lifecycle, has accelerated research into energy-related technologies. Due to their ubiquity, magnetic materials play an important role in improving the effi ciency and performance of devices in electric power generation, conditioning, conversion, transportation, and other energy-use sectors of the economy. This review focuses on the state-of-the-art hard and soft magnets and magnetocaloric materials, with an emphasis on their optimization for energy applications. Specifi cally, the impact of hard magnets on electric motor and transportation technologies, of soft magnetic materials on electricity generation and conversion technologies, and of magnetocaloric materials for refrigeration technologies, are discussed. The synthesis, characterization, and property evaluation of the materials, with an emphasis on structure‐property relationships, are discussed in the context of their respective markets, as well as their potential impact on energy effi ciency. Finally, considering future bottlenecks in raw materials, options for the recycling of rare-earth intermetallics for hard magnets will be discussed.

2,465 citations

Journal ArticleDOI
TL;DR: In this paper, the critical flux limiting stage is implemented in multidimensions without resort to time splitting, which allows the use of flux-corrected transport (FCT) techniques in multi-dimensional fluid problems for which time splitting would produce unacceptable numerical results.

2,454 citations

Journal ArticleDOI
TL;DR: The Sloan Digital Sky Survey (SDSS) is an imaging and spectroscopic survey that will eventually cover approximately one-quarter of the celestial sphere and collect spectra of ≈106 galaxies, 100,000 quasars, 30,000 stars, and 30, 000 serendipity targets as discussed by the authors.
Abstract: The Sloan Digital Sky Survey (SDSS) is an imaging and spectroscopic survey that will eventually cover approximately one-quarter of the celestial sphere and collect spectra of ≈106 galaxies, 100,000 quasars, 30,000 stars, and 30,000 serendipity targets. In 2001 June, the SDSS released to the general astronomical community its early data release, roughly 462 deg2 of imaging data including almost 14 million detected objects and 54,008 follow-up spectra. The imaging data were collected in drift-scan mode in five bandpasses (u, g, r, i, and z); our 95% completeness limits for stars are 22.0, 22.2, 22.2, 21.3, and 20.5, respectively. The photometric calibration is reproducible to 5%, 3%, 3%, 3%, and 5%, respectively. The spectra are flux- and wavelength-calibrated, with 4096 pixels from 3800 to 9200 A at R ≈ 1800. We present the means by which these data are distributed to the astronomical community, descriptions of the hardware used to obtain the data, the software used for processing the data, the measured quantities for each observed object, and an overview of the properties of this data set.

2,422 citations

Proceedings ArticleDOI
09 Apr 1997
TL;DR: The proposed protocol is a new distributed routing protocol for mobile, multihop, wireless networks that is highly adaptive, efficient and scalable; being best-suited for use in large, dense, mobile networks.
Abstract: We present a new distributed routing protocol for mobile, multihop, wireless networks. The protocol is one of a family of protocols which we term "link reversal" algorithms. The protocol's reaction is structured as a temporally-ordered sequence of diffusing computations; each computation consisting of a sequence of directed link reversals. The protocol is highly adaptive, efficient and scalable; being best-suited for use in large, dense, mobile networks. In these networks, the protocol's reaction to link failures typically involves only a localized "single pass" of the distributed algorithm. This capability is unique among protocols which are stable in the face of network partitions, and results in the protocol's high degree of adaptivity. This desirable behavior is achieved through the novel use of a "physical or logical clock" to establish the "temporal order" of topological change events which is used to structure (or order) the algorithm's reaction to topological changes. We refer to the protocol as the temporally-ordered routing algorithm (TORA).

2,211 citations


Authors

Showing all 17463 results

NameH-indexPapersCitations
Derek R. Lovley16858295315
Michael Kramer1671713127224
Moungi G. Bawendi165626118108
Olaf Reimer14471674359
Thomas P. Russell141101280055
Richard D. Smith140118079758
David A. Jackson136109568352
Tim Jones135131491422
Denis Bastieri13547362620
Tsunefumi Mizuno13047860014
James Chiang12930860268
Mark A. Ratner12796868132
David J. Smith1252090108066
Mostafa A. El-Sayed122697106539
Richard N. Zare120120167880
Network Information
Related Institutions (5)
California Institute of Technology
146.6K papers, 8.6M citations

92% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

90% related

University of Maryland, College Park
155.9K papers, 7.2M citations

89% related

University of Colorado Boulder
115.1K papers, 5.3M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202329
2022111
2021813
20201,084
20191,195
20181,128