scispace - formally typeset
Search or ask a question
Institution

Universidad Santo Tomás

EducationBogotá, Colombia
About: Universidad Santo Tomás is a education organization based out in Bogotá, Colombia. It is known for research contribution in the topics: Population & Body mass index. The organization has 3532 authors who have published 3550 publications receiving 25018 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

4,316 citations

Journal ArticleDOI
TL;DR: The most comprehensive meta-analysis to date by synthesizing the results of 228 studies examining biological responses to ocean acidification reveals decreased survival, calcification, growth, development and abundance in response to acidification, and suggests that other factors, such as nutritional status or source population, could cause substantial variation in organisms' responses.
Abstract: Ocean acidification represents a threat to marine species worldwide, and forecasting the ecological impacts of acidification is a high priority for science, management, and policy. As research on the topic expands at an exponential rate, a comprehensive understanding of the variability in organisms' responses and corresponding levels of certainty is necessary to forecast the ecological effects. Here, we perform the most comprehensive meta-analysis to date by synthesizing the results of 228 studies examining biological responses to ocean acidification. The results reveal decreased survival, calcification, growth, development and abundance in response to acidification when the broad range of marine organisms is pooled together. However, the magnitude of these responses varies among taxonomic groups, suggesting there is some predictable trait-based variation in sensitivity, despite the investigation of approximately 100 new species in recent research. The results also reveal an enhanced sensitivity of mollusk larvae, but suggest that an enhanced sensitivity of early life history stages is not universal across all taxonomic groups. In addition, the variability in species' responses is enhanced when they are exposed to acidification in multi-species assemblages, suggesting that it is important to consider indirect effects and exercise caution when forecasting abundance patterns from single-species laboratory experiments. Furthermore, the results suggest that other factors, such as nutritional status or source population, could cause substantial variation in organisms' responses. Last, the results highlight a trend towards enhanced sensitivity to acidification when taxa are concurrently exposed to elevated seawater temperature.

1,787 citations

01 Jan 2004

1,057 citations

Journal ArticleDOI
TL;DR: In this paper, the authors argue that ocean acidification from anthropogenic CO2 emissions is largely an open ocean syndrome and that a concept of anthro- pogenic impacts on marine pH, which is applicable across the entire ocean, from coastal to open-ocean environments, provides a superior framework to consider the multiple components of the anthropogenic perturbation of marine pH trajectories.
Abstract: Ocean acidification due to anthropogenic CO2 emissions is a dominant driver of long-term changes in pH in the open ocean, raising concern for the future of calcifying organisms, many of which are present in coastal habitats. However, changes in pH in coastal ecosystems result from a multitude of drivers, including impacts from watershed pro- cesses, nutrient inputs, and changes in ecosystem structure and metabolism. Interaction between ocean acidification due to anthropogenic CO2 emissions and the dynamic regional to local drivers of coastal ecosystems have resulted in complex regulation of pH in coastal waters. Changes in the watershed can, for example, lead to changes in alkalinity and CO2 fluxes that, together with metabolic processes and oceanic dynamics, yield high-magnitude decadal changes of up to 0.5 units in coastal pH. Metabolism results in strong diel to seasonal fluctuations in pH, with characteristic ranges of 0.3 pH units, with metabolically intense habitats exceeding this range on a daily basis. The intense variability and multiple, complex controls on pH implies that the concept of ocean acidification due to anthropogenic CO2 emissions cannot be transposed to coastal ecosystems directly. Furthermore, in coastal ecosys- tems, the detection of trends towards acidification is not trivial and the attribution of these changes to anthropogenic CO2 emissions is even more problematic. Coastal ecosystems may show acidification or basification, depending on the balance betweenthe invasionof coastal waters byanthropogenic CO2, watershed export of alkalinity, organic matter and CO2 ,a nd changes in the balance between primary production, respira- tion and calcification rates in response to changes in nutrient inputs and losses of ecosystem components. Hence, we contend that ocean acidification from anthropogenic CO2 is largely an open-ocean syndrome and that a concept of anthro- pogenic impacts on marine pH, which is applicable across the entire ocean, from coastal to open-ocean environments, provides a superior framework to consider the multiple components of the anthropogenic perturbation of marine pH trajectories. The concept of anthropogenic impacts on seawater pH acknowledges that a regional focus is neces- sary to predict future trajectories in the pH of coastal waters and points at opportunities to manage these trajec- tories locally to conserve coastal organisms vulnerable to ocean acidification.

575 citations

Journal ArticleDOI
TL;DR: Dopamine oxidation to dopamine o‐quinone, aminochrome and 5,6‐indolequinone seems to play an important role in the neurodegenerative processes of Parkinson's disease as aminochrome induces mitochondria dysfunction, formation and stabilization of neurotoxic protofibrils of alpha synuclein, protein degradation dysfunction of both proteasomal and lysosomal systems and oxidative stress.
Abstract: The molecular mechanisms causing the loss of dopaminergic neurons containing neuromelanin in the substantia nigra and responsible for motor symptoms of Parkinson's disease are still unknown. The discovery of genes associated with Parkinson's disease (such as alpha synuclein (SNCA), E3 ubiquitin protein ligase (parkin), DJ-1 (PARK7), ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL-1), serine/threonine-protein kinase (PINK-1), leucine-rich repeat kinase 2 (LRRK2), cation-transporting ATPase 13A1 (ATP13A), etc.) contributed enormously to basic research towards understanding the role of these proteins in the sporadic form of the disease. However, it is generally accepted by the scientific community that mitochondria dysfunction, alpha synuclein aggregation, dysfunction of protein degradation, oxidative stress and neuroinflammation are involved in neurodegeneration. Dopamine oxidation seems to be a complex pathway in which dopamine o-quinone, aminochrome and 5,6-indolequinone are formed. However, both dopamine o-quinone and 5,6-indolequinone are so unstable that is difficult to study and separate their roles in the degenerative process occurring in Parkinson's disease. Dopamine oxidation to dopamine o-quinone, aminochrome and 5,6-indolequinone seems to play an important role in the neurodegenerative processes of Parkinson's disease as aminochrome induces: (i) mitochondria dysfunction, (ii) formation and stabilization of neurotoxic protofibrils of alpha synuclein, (iii) protein degradation dysfunction of both proteasomal and lysosomal systems and (iv) oxidative stress. The neurotoxic effects of aminochrome in dopaminergic neurons can be inhibited by: (i) preventing dopamine oxidation of the transporter that takes up dopamine into monoaminergic vesicles with low pH and dopamine oxidative deamination catalyzed by monoamino oxidase (ii) dopamine o-quinone, aminochrome and 5,6-indolequinone polymerization to neuromelanin and (iii) two-electron reduction of aminochrome catalyzed by DT-diaphorase. Furthermore, dopamine conversion to NM seems to have a dual role, protective and toxic, depending mostly on the cellular context. Dopamine oxidation to dopamine o-quinone, aminochrome and 5,6-indolequinone plays an important role in neurodegeneration in Parkinson's disease since they induce mitochondria and protein degradation dysfunction; formation of neurotoxic alpha synuclein protofibrils and oxidative stress. However, the cells have a protective system against dopamine oxidation composed by dopamine uptake mediated by Vesicular monoaminergic transporter-2 (VMAT-2), neuromelanin formation, two-electron reduction and GSH-conjugation mediated by Glutathione S-transferase M2-2 (GSTM2).

368 citations


Authors

Showing all 3558 results

Network Information
Related Institutions (5)
Pontifical Xavierian University
12.7K papers, 158.4K citations

86% related

National University of Colombia
43.4K papers, 395.7K citations

85% related

University of Antioquia
23.9K papers, 267.4K citations

85% related

University of Los Andes
25.5K papers, 413.4K citations

82% related

University of Santiago, Chile
12K papers, 202.5K citations

80% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
202239
2021348
2020383
2019359
2018315