scispace - formally typeset
Search or ask a question
Institution

Universidade Federal de Viçosa

EducationViçosa, Brazil
About: Universidade Federal de Viçosa is a education organization based out in Viçosa, Brazil. It is known for research contribution in the topics: Population & Biology. The organization has 16012 authors who have published 26711 publications receiving 353416 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Results indicate a stimulation of the source capacity, coupled with increased sink demand, in Si-treated plants; therefore, Si nutrition is identified as an important target in attempts to improve the agronomic yield of rice.
Abstract: Silicon (Si) is not considered to be an essential element for higher plants and is believed to have no effect on primary metabolism in unstressed plants. In rice (Oryza sativa), Si nutrition improves grain production; however, no attempt has been made to elucidate the physiological mechanisms underlying such responses. Here, we assessed crop yield and combined advanced gas exchange analysis with carbon isotope labelling and metabolic profiling to measure the effects of Si nutrition on rice photosynthesis, together with the associated metabolic changes, by comparing wild-type rice with the low-Si rice mutant lsi1 under unstressed conditions. Si improved the harvest index, paralleling an increase in nitrogen use efficiency. Higher crop yields associated with Si nutrition exerted a feed-forward effect on photosynthesis which was fundamentally associated with increased mesophyll conductance. By contrast, Si nutrition did not affect photosynthetic gas exchange during the vegetative growth phase or in de-grained plants. In addition, Si nutrition altered primary metabolism by stimulating amino acid remobilization. Our results indicate a stimulation of the source capacity, coupled with increased sink demand, in Si-treated plants; therefore, we identify Si nutrition as an important target in attempts to improve the agronomic yield of rice.

229 citations

Journal ArticleDOI
TL;DR: The recent progress revealing the role of bZIP transcription factors in the biotic stress responses of several plant species, from Arabidopsis to cotton are summarized and the interacting partners of b ZIP proteins in molecular responses during pathogen attack and the key components of the signal transduction pathways with which they physically interact during plant defense responses are summarized.
Abstract: Transcription factors of the basic leucine zipper (bZIP) family control important processes in all eukaryotes. In plants, bZIPs are master regulators of many central developmental and physiological processes, including morphogenesis, seed formation, abiotic and biotic stress responses. Modulation of the expression patterns of bZIP genes and changes in their activity often contribute to the activation of various signaling pathways and regulatory networks of different physiological processes. However, most advances in the study of plant bZIP transcription factors are related to their involvement in abiotic stress and development. In contrast, there are few examples of functional research with regard to biotic stress, particularly in the defense against pathogens. In this review, we summarize the recent progress revealing the role of bZIP transcription factors in the biotic stress responses of several plant species, from Arabidopsis to cotton. Moreover, we summarize the interacting partners of bZIP proteins in molecular responses during pathogen attack and the key components of the signal transduction pathways with which they physically interact during plant defense responses. Lastly, we focus on the recent advances regarding research on the functional role of bZIPs in major agricultural cultivars and examine the studies performed in this field.

229 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report widespread, severe and persistent declines in vegetation greenness, a proxy for photosynthetic carbon fixation, in the Amazon region during the 2010 drought based on analysis of satellite measurements.
Abstract: [1] During this decade, the Amazon region has suffered two severe droughts in the short span of five years – 2005 and 2010. Studies on the 2005 drought present a complex, and sometimes contradictory, picture of how these forests have responded to the drought. Now, on the heels of the 2005 drought, comes an even stronger drought in 2010, as indicated by record low river levels in the 109 years of bookkeeping. How has the vegetation in this region responded to this record-breaking drought? Here we report widespread, severe and persistent declines in vegetation greenness, a proxy for photosynthetic carbon fixation, in the Amazon region during the 2010 drought based on analysis of satellite measurements. The 2010 drought, as measured by rainfall deficit, affected an area 1.65 times larger than the 2005 drought – nearly 5 million km2 of vegetated area in Amazonia. The decline in greenness during the 2010 drought spanned an area that was four times greater (2.4 million km2) and more severe than in 2005. Notably, 51% of all drought-stricken forests showed greenness declines in 2010 (1.68 million km2) compared to only 14% in 2005 (0.32 million km2). These declines in 2010 persisted following the end of the dry season drought and return of rainfall to normal levels, unlike in 2005. Overall, the widespread loss of photosynthetic capacity of Amazonian vegetation due to the 2010 drought may represent a significant perturbation to the global carbon cycle.

229 citations

Journal ArticleDOI
TL;DR: Concerns that β-diversity has been underestimated as a driver of biodiversity change are supported and underscore the importance of maintaining a distributed network of reserves, including remaining areas of undisturbed primary forest, but also disturbed and regenerating forests, to conserve regional biota.
Abstract: Land-cover change and ecosystem degradation may lead to biotic homogenization, yet our understanding of this phenomenon over large spatial scales and different biotic groups remains weak. We used a multi-taxa dataset from 335 sites and 36 heterogeneous landscapes in the Brazilian Amazon to examine the potential for landscape-scale processes to modulate the cumulative effects of local disturbances. Biotic homogenization was high in production areas but much less in disturbed and regenerating forests, where high levels of among-site and among-landscape β-diversity appeared to attenuate species loss at larger scales. We found consistently high levels of β-diversity among landscapes for all land cover classes, providing support for landscape-scale divergence in species composition. Our findings support concerns that β-diversity has been underestimated as a driver of biodiversity change and underscore the importance of maintaining a distributed network of reserves, including remaining areas of undisturbed primary forest, but also disturbed and regenerating forests, to conserve regional biota.

228 citations

Journal ArticleDOI
TL;DR: Sorghum is a source of nutrients and bioactive compounds, especially 3-deoxyanthocyanidins, tannins, and polycosanols, which beneficially modulate, in vitro and in animals, parameters related to noncommunicable diseases.
Abstract: Sorghum is the fifth most produced cereal in the world and is a source of nutrients and bioactive compounds for the human diet. We summarize the recent findings concerning the nutrients and bioactive compounds of sorghum and its potential impact on human health, analyzing the limitations and positive points of the studies and proposing directions for future research. Sorghum is basically composed of starch, which is more slowly digested than that of other cereals, has low digestibility proteins and unsaturated lipids, and is a source of some minerals and vitamins. Furthermore, most sorghum varieties are rich in phenolic compounds, especially 3-deoxyanthocyanidins and tannins. The results obtained in vitro and in animals have shown that phenolics compounds and fat soluble compounds (polycosanols) isolated from sorghum benefit the gut microbiota and parameters related to obesity, oxidative stress, inflammation, diabetes, dyslipidemia, cancer, and hypertension. The effects of whole sorghum and its fractions on human health need to be evaluated. In conclusion, sorghum is a source of nutrients and bioactive compounds, especially 3-deoxyanthocyanidins, tannins, and polycosanols, which beneficially modulate, in vitro and in animals, parameters related to noncommunicable diseases. Studies should be conducted to evaluate the effects of different processing on protein and starch digestibility of sorghum as well as on the profile and bioavailability of its bioactive compounds, especially 3-deoxyanthocyanidins and tannins. Furthermore, the benefits resulting from the interaction of bioactive compounds in sorghum and human microbiota should be studied.

228 citations


Authors

Showing all 16194 results

Network Information
Related Institutions (5)
Empresa Brasileira de Pesquisa Agropecuária
36.7K papers, 661K citations

97% related

Sao Paulo State University
100.4K papers, 1.3M citations

93% related

Federal University of Paraná
46.6K papers, 546.5K citations

92% related

Universidade Federal do Rio Grande do Sul
89.4K papers, 1.4M citations

90% related

Universidade Federal de Minas Gerais
75.6K papers, 1.2M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202346
2022320
20212,074
20202,208
20191,941
20181,865