scispace - formally typeset
Search or ask a question
Institution

Universidade Positivo

EducationCuritiba, Brazil
About: Universidade Positivo is a education organization based out in Curitiba, Brazil. It is known for research contribution in the topics: Population & Biodiversity. The organization has 1290 authors who have published 1237 publications receiving 9335 citations. The organization is also known as: Positive University.


Papers
More filters
Journal ArticleDOI
TL;DR: Analysis of growth parameters, media of cultivation, biomass composition and productivity and nutrients balance, and carbon metabolism in terms of carbon dioxide fixation and its destination in microalgae cultivations found carbon dioxide fixated was mainly used for microalgal biomass production.

477 citations

Journal ArticleDOI
Helen Phillips1, Carlos A. Guerra2, Marie Luise Carolina Bartz3, Maria J. I. Briones4, George G. Brown5, Thomas W. Crowther6, Olga Ferlian1, Konstantin B. Gongalsky7, Johan van den Hoogen6, Julia Krebs1, Alberto Orgiazzi, Devin Routh6, Benjamin Schwarz8, Elizabeth M. Bach, Joanne M. Bennett2, Ulrich Brose9, Thibaud Decaëns, Birgitta König-Ries9, Michel Loreau, Jérôme Mathieu, Christian Mulder10, Wim H. van der Putten11, Kelly S. Ramirez, Matthias C. Rillig12, David J. Russell13, Michiel Rutgers, Madhav P. Thakur, Franciska T. de Vries, Diana H. Wall14, David A. Wardle, Miwa Arai15, Fredrick O. Ayuke16, Geoff H. Baker17, Robin Beauséjour, José Camilo Bedano18, Klaus Birkhofer19, Eric Blanchart, Bernd Blossey20, Thomas Bolger21, Robert L. Bradley, Mac A. Callaham22, Yvan Capowiez, Mark E. Caulfield11, Amy Choi23, Felicity Crotty24, Andrea Dávalos20, Andrea Dávalos25, Darío J. Díaz Cosín, Anahí Domínguez18, Andrés Esteban Duhour26, Nick van Eekeren, Christoph Emmerling27, Liliana B. Falco26, Rosa Fernández, Steven J. Fonte14, Carlos Fragoso, André L.C. Franco, Martine Fugère, Abegail T Fusilero28, Shaieste Gholami29, Michael J. Gundale, Mónica Gutiérrez López, Davorka K. Hackenberger30, Luis M. Hernández, Takuo Hishi31, Andrew R. Holdsworth32, Martin Holmstrup33, Kristine N. Hopfensperger34, Esperanza Huerta Lwanga11, Veikko Huhta, Tunsisa T. Hurisso14, Tunsisa T. Hurisso35, Basil V. Iannone, Madalina Iordache36, Monika Joschko, Nobuhiro Kaneko37, Radoslava Kanianska38, Aidan M. Keith39, Courtland Kelly14, Maria Kernecker, Jonatan Klaminder, Armand W. Koné40, Yahya Kooch41, Sanna T. Kukkonen, H. Lalthanzara42, Daniel R. Lammel12, Daniel R. Lammel43, Iurii M. Lebedev7, Yiqing Li44, Juan B. Jesús Lidón, Noa Kekuewa Lincoln45, Scott R. Loss46, Raphaël Marichal, Radim Matula, Jan Hendrik Moos47, Gerardo Moreno48, Alejandro Morón-Ríos, Bart Muys49, Johan Neirynck50, Lindsey Norgrove, Marta Novo, Visa Nuutinen51, Victoria Nuzzo, Mujeeb Rahman P, Johan Pansu17, Shishir Paudel46, Guénola Pérès, Lorenzo Pérez-Camacho52, Raúl Piñeiro, Jean-François Ponge, Muhammad Rashid53, Muhammad Rashid54, Salvador Rebollo52, Javier Rodeiro-Iglesias4, Miguel Á. Rodríguez52, Alexander M. Roth55, Guillaume Xavier Rousseau56, Anna Rożen57, Ehsan Sayad29, Loes van Schaik58, Bryant C. Scharenbroch59, Michael Schirrmann60, Olaf Schmidt21, Boris Schröder61, Julia Seeber62, Maxim Shashkov63, Maxim Shashkov64, Jaswinder Singh65, Sandy M. Smith23, Michael Steinwandter, José Antonio Talavera66, Dolores Trigo, Jiro Tsukamoto67, Anne W. de Valença, Steven J. Vanek14, Iñigo Virto68, Adrian A. Wackett55, Matthew W. Warren, Nathaniel H. Wehr, Joann K. Whalen69, Michael B. Wironen70, Volkmar Wolters71, Irina V. Zenkova, Weixin Zhang72, Erin K. Cameron73, Nico Eisenhauer1 
Leipzig University1, Martin Luther University of Halle-Wittenberg2, Universidade Positivo3, University of Vigo4, Empresa Brasileira de Pesquisa Agropecuária5, ETH Zurich6, Moscow State University7, University of Freiburg8, University of Jena9, University of Catania10, Wageningen University and Research Centre11, Free University of Berlin12, Senckenberg Museum13, Colorado State University14, National Agriculture and Food Research Organization15, University of Nairobi16, Commonwealth Scientific and Industrial Research Organisation17, National Scientific and Technical Research Council18, Brandenburg University of Technology19, Cornell University20, University College Dublin21, United States Forest Service22, University of Toronto23, Aberystwyth University24, State University of New York at Cortland25, National University of Luján26, University of Trier27, University of the Philippines Mindanao28, Razi University29, Josip Juraj Strossmayer University of Osijek30, Kyushu University31, Minnesota Pollution Control Agency32, Aarhus University33, Northern Kentucky University34, Lincoln University (Missouri)35, University of Agricultural Sciences, Dharwad36, Fukushima University37, Matej Bel University38, Lancaster University39, Université d'Abobo-Adjamé40, Tarbiat Modares University41, Pachhunga University College42, University of São Paulo43, University of Hawaii at Hilo44, College of Tropical Agriculture and Human Resources45, Oklahoma State University–Stillwater46, Forest Research Institute47, University of Extremadura48, Katholieke Universiteit Leuven49, Research Institute for Nature and Forest50, Natural Resources Institute Finland51, University of Alcalá52, COMSATS Institute of Information Technology53, King Abdulaziz University54, University of Minnesota55, Federal University of Maranhão56, Jagiellonian University57, Technical University of Berlin58, University of Wisconsin-Madison59, Leibniz Association60, Braunschweig University of Technology61, University of Innsbruck62, Keldysh Institute of Applied Mathematics63, Russian Academy of Sciences64, Khalsa College, Amritsar65, University of La Laguna66, Kōchi University67, Universidad Pública de Navarra68, McGill University69, The Nature Conservancy70, University of Giessen71, Henan University72, University of Saint Mary73
25 Oct 2019-Science
TL;DR: It was found that local species richness and abundance typically peaked at higher latitudes, displaying patterns opposite to those observed in aboveground organisms, which suggest that climate change may have serious implications for earthworm communities and for the functions they provide.
Abstract: Soil organisms, including earthworms, are a key component of terrestrial ecosystems. However, little is known about their diversity, their distribution, and the threats affecting them. We compiled a global dataset of sampled earthworm communities from 6928 sites in 57 countries as a basis for predicting patterns in earthworm diversity, abundance, and biomass. We found that local species richness and abundance typically peaked at higher latitudes, displaying patterns opposite to those observed in aboveground organisms. However, high species dissimilarity across tropical locations may cause diversity across the entirety of the tropics to be higher than elsewhere. Climate variables were found to be more important in shaping earthworm communities than soil properties or habitat cover. These findings suggest that climate change may have serious implications for earthworm communities and for the functions they provide.

223 citations

Journal ArticleDOI
11 Sep 2013-Brain
TL;DR: Genetic testing using targeted capture followed by next-generation sequencing was efficient, cost-effective, and enabled a molecular diagnosis in many refractory cases and has broad implications for clinical neurology practice and the approach to diagnostic testing.
Abstract: Many neurological conditions are caused by immensely heterogeneous gene mutations. The diagnostic process is often long and complex with most patients undergoing multiple invasive and costly investigations without ever reaching a conclusive molecular diagnosis. The advent of massively parallel, next-generation sequencing promises to revolutionize genetic testing and shorten the 'diagnostic odyssey' for many of these patients. We performed a pilot study using heterogeneous ataxias as a model neurogenetic disorder to assess the introduction of next-generation sequencing into clinical practice. We captured 58 known human ataxia genes followed by Illumina Next-Generation Sequencing in 50 highly heterogeneous patients with ataxia who had been extensively investigated and were refractory to diagnosis. All cases had been tested for spinocerebellar ataxia 1-3, 6, 7 and Friedrich's ataxia and had multiple other biochemical, genetic and invasive tests. In those cases where we identified the genetic mutation, we determined the time to diagnosis. Pathogenicity was assessed using a bioinformatics pipeline and novel variants were validated using functional experiments. The overall detection rate in our heterogeneous cohort was 18% and varied from 8.3% in those with an adult onset progressive disorder to 40% in those with a childhood or adolescent onset progressive disorder. The highest detection rate was in those with an adolescent onset and a family history (75%). The majority of cases with detectable mutations had a childhood onset but most are now adults, reflecting the long delay in diagnosis. The delays were primarily related to lack of easily available clinical testing, but other factors included the presence of atypical phenotypes and the use of indirect testing. In the cases where we made an eventual diagnosis, the delay was 3-35 years (mean 18.1 years). Alignment and coverage metrics indicated that the capture and sequencing was highly efficient and the consumable cost was ∼£400 (€460 or US$620). Our pathogenicity interpretation pathway predicted 13 different mutations in eight different genes: PRKCG, TTBK2, SETX, SPTBN2, SACS, MRE11, KCNC3 and DARS2 of which nine were novel including one causing a newly described recessive ataxia syndrome. Genetic testing using targeted capture followed by next-generation sequencing was efficient, cost-effective, and enabled a molecular diagnosis in many refractory cases. A specific challenge of next-generation sequencing data is pathogenicity interpretation, but functional analysis confirmed the pathogenicity of novel variants showing that the pipeline was robust. Our results have broad implications for clinical neurology practice and the approach to diagnostic testing.

155 citations


Network Information
Related Institutions (5)
Federal University of Paraná
46.6K papers, 546.5K citations

87% related

Sao Paulo State University
100.4K papers, 1.3M citations

86% related

University of São Paulo
272.3K papers, 5.1M citations

86% related

Universidade Federal do Rio Grande do Sul
89.4K papers, 1.4M citations

86% related

Universidade Federal de Minas Gerais
75.6K papers, 1.2M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20232
202216
2021106
2020118
2019108
2018142