scispace - formally typeset
Search or ask a question
Institution

Université catholique de Louvain

EducationLouvain-la-Neuve, Belgium
About: Université catholique de Louvain is a education organization based out in Louvain-la-Neuve, Belgium. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 25319 authors who have published 57360 publications receiving 2172080 citations. The organization is also known as: University of Louvain & UCLouvain.


Papers
More filters
Journal ArticleDOI
27 Jul 2001-Science
TL;DR: The annotated DNA sequence of the α-proteobacteriumSinorhizobium meliloti, the symbiont of alfalfa, is presented, indicating that all three elements contribute, in varying degrees, to symbiosis and reveals how this genome may have emerged during evolution.
Abstract: The scarcity of usable nitrogen frequently limits plant growth. A tight metabolic association with rhizobial bacteria allows legumes to obtain nitrogen compounds by bacterial reduction of dinitrogen (N2) to ammonium (NH4+). We present here the annotated DNA sequence of the alpha-proteobacterium Sinorhizobium meliloti, the symbiont of alfalfa. The tripartite 6.7-megabase (Mb) genome comprises a 3.65-Mb chromosome, and 1.35-Mb pSymA and 1.68-Mb pSymB megaplasmids. Genome sequence analysis indicates that all three elements contribute, in varying degrees, to symbiosis and reveals how this genome may have emerged during evolution. The genome sequence will be useful in understanding the dynamics of interkingdom associations and of life in soil environments.

1,157 citations

Journal ArticleDOI
TL;DR: Halloysite clay minerals are ubiquitous in soils and weathered rocks where they occur in a variety of particle shapes and hydration states as discussed by the authors and diversity also characterizes their chemical composition, cation exchange capacity and potassium selectivity.
Abstract: Halloysite clay minerals are ubiquitous in soils and weathered rocks where they occur in a variety of particle shapes and hydration states. Diversity also characterizes their chemical composition, cation exchange capacity and potassium selectivity. This review summarizes the extensive but scattered literature on halloysite, from its natural occurrence, through its crystal structure, chemical and morphological diversity, to its reactivity toward organic compounds, ions and salts, involving the various methods of differentiating halloysite from kaolinite. No unique test seems to be ideal to distinguish these 1:1 clay minerals, especially in soils. The occurrence of 2:1 phyllosilicate contaminants appears, so far, to provide the best explanation for the high charge and potassium selectivity of halloysite. Yet, hydration properties of the mineral probably play a major role in ion sorption. Clear trends seem to relate particle morphology and structural Fe. However, future work is required to understand the possible mechanisms linking chemical, morphological, hydration and charge properties of halloysite.

1,156 citations

Journal ArticleDOI
23 Sep 2010-Blood
TL;DR: The results from the 10-year analysis confirm the benefits and tolerability of the addition of rituximab to CHOP and underscore the need to treat elderly patients as young patients, with the use of curative chemotherapy.

1,146 citations

Journal ArticleDOI
Kurt Lejaeghere1, Gustav Bihlmayer2, Torbjörn Björkman3, Torbjörn Björkman4, Peter Blaha5, Stefan Blügel2, Volker Blum6, Damien Caliste7, Ivano E. Castelli8, Stewart J. Clark9, Andrea Dal Corso10, Stefano de Gironcoli10, Thierry Deutsch7, J. K. Dewhurst11, Igor Di Marco12, Claudia Draxl13, Claudia Draxl14, Marcin Dulak15, Olle Eriksson12, José A. Flores-Livas11, Kevin F. Garrity16, Luigi Genovese7, Paolo Giannozzi17, Matteo Giantomassi18, Stefan Goedecker19, Xavier Gonze18, Oscar Grånäs12, Oscar Grånäs20, E. K. U. Gross11, Andris Gulans13, Andris Gulans14, Francois Gygi21, D. R. Hamann22, P. J. Hasnip23, Natalie Holzwarth24, Diana Iusan12, Dominik B. Jochym25, F. Jollet, Daniel M. Jones26, Georg Kresse27, Klaus Koepernik28, Klaus Koepernik29, Emine Kucukbenli8, Emine Kucukbenli10, Yaroslav Kvashnin12, Inka L. M. Locht30, Inka L. M. Locht12, Sven Lubeck13, Martijn Marsman27, Nicola Marzari8, Ulrike Nitzsche28, Lars Nordström12, Taisuke Ozaki31, Lorenzo Paulatto32, Chris J. Pickard33, Ward Poelmans1, Matt Probert23, Keith Refson25, Keith Refson34, Manuel Richter28, Manuel Richter29, Gian-Marco Rignanese18, Santanu Saha19, Matthias Scheffler14, Matthias Scheffler35, Martin Schlipf21, Karlheinz Schwarz5, Sangeeta Sharma11, Francesca Tavazza16, Patrik Thunström5, Alexandre Tkatchenko14, Alexandre Tkatchenko36, Marc Torrent, David Vanderbilt22, Michiel van Setten18, Veronique Van Speybroeck1, John M. Wills37, Jonathan R. Yates26, Guo-Xu Zhang38, Stefaan Cottenier1 
25 Mar 2016-Science
TL;DR: A procedure to assess the precision of DFT methods was devised and used to demonstrate reproducibility among many of the most widely used DFT codes, demonstrating that the precisionof DFT implementations can be determined, even in the absence of one absolute reference code.
Abstract: The widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We report the results of a community-wide effort that compared 15 solid-state codes, using 40 different potentials or basis set types, to assess the quality of the Perdew-Burke-Ernzerhof equations of state for 71 elemental crystals. We conclude that predictions from recent codes and pseudopotentials agree very well, with pairwise differences that are comparable to those between different high-precision experiments. Older methods, however, have less precise agreement. Our benchmark provides a framework for users and developers to document the precision of new applications and methodological improvements.

1,141 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the global literature explores these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.
Abstract: Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time—depending on the plant, its growth stage, and the amount of pesticide applied. A wide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.

1,131 citations


Authors

Showing all 25540 results

NameH-indexPapersCitations
Robert Langer2812324326306
Pulickel M. Ajayan1761223136241
Klaus Müllen1642125140748
Giacomo Bruno1581687124368
Willem M. de Vos14867088146
David Goldstein1411301101955
Krzysztof Piotrzkowski141126999607
Andrea Giammanco135136298093
Christophe Delaere135132096742
Vincent Lemaitre134131099190
Michael Tytgat134144994133
Jian Li133286387131
Jost B. Jonas1321158166510
George Stephans132133786865
Peter Hall132164085019
Network Information
Related Institutions (5)
Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

95% related

University of Paris
174.1K papers, 5M citations

95% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

94% related

Utrecht University
139.3K papers, 6.2M citations

93% related

University of Amsterdam
140.8K papers, 5.9M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023147
2022424
20212,952
20202,969
20192,752
20182,676