Institution

# Université de Montréal

Education•Montreal, Quebec, Canada•

About: Université de Montréal is a education organization based out in Montreal, Quebec, Canada. It is known for research contribution in the topics: Population & Poison control. The organization has 45641 authors who have published 100476 publications receiving 4004007 citations. The organization is also known as: University of Montreal & UdeM.

Topics: Population, Poison control, Health care, Receptor, Prostate cancer

##### Papers published on a yearly basis

##### Papers

More filters

••

[...]

Facebook

^{1}, New York University^{2}, Université de Montréal^{3}, Google^{4}, University of Toronto^{5}TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.

Abstract: Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

46,982 citations

••

08 Dec 2014TL;DR: A new framework for estimating generative models via an adversarial process, in which two models are simultaneously train: a generative model G that captures the data distribution and a discriminative model D that estimates the probability that a sample came from the training data rather than G.

Abstract: We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to ½ everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples.

38,211 citations

•

[...]

18 Nov 2016

TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.

Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

•

01 Jan 2015TL;DR: It is conjecture that the use of a fixed-length vector is a bottleneck in improving the performance of this basic encoder-decoder architecture, and it is proposed to extend this by allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word, without having to form these parts as a hard segment explicitly.

Abstract: Neural machine translation is a recently proposed approach to machine translation. Unlike the traditional statistical machine translation, the neural machine translation aims at building a single neural network that can be jointly tuned to maximize the translation performance. The models proposed recently for neural machine translation often belong to a family of encoder-decoders and consists of an encoder that encodes a source sentence into a fixed-length vector from which a decoder generates a translation. In this paper, we conjecture that the use of a fixed-length vector is a bottleneck in improving the performance of this basic encoder-decoder architecture, and propose to extend this by allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word, without having to form these parts as a hard segment explicitly. With this new approach, we achieve a translation performance comparable to the existing state-of-the-art phrase-based system on the task of English-to-French translation. Furthermore, qualitative analysis reveals that the (soft-)alignments found by the model agree well with our intuition.

20,027 citations

••

Aalto University

^{1}, Université de Montréal^{2}, AT&T^{3}, École Polytechnique de Montréal^{4}, Alcatel-Lucent^{5}TL;DR: In this paper, the encoder and decoder of the RNN Encoder-Decoder model are jointly trained to maximize the conditional probability of a target sequence given a source sequence.

Abstract: In this paper, we propose a novel neural network model called RNN Encoder‐ Decoder that consists of two recurrent neural networks (RNN). One RNN encodes a sequence of symbols into a fixedlength vector representation, and the other decodes the representation into another sequence of symbols. The encoder and decoder of the proposed model are jointly trained to maximize the conditional probability of a target sequence given a source sequence. The performance of a statistical machine translation system is empirically found to improve by using the conditional probabilities of phrase pairs computed by the RNN Encoder‐Decoder as an additional feature in the existing log-linear model. Qualitatively, we show that the proposed model learns a semantically and syntactically meaningful representation of linguistic phrases.

19,998 citations

##### Authors

Showing all 45957 results

Name | H-index | Papers | Citations |
---|---|---|---|

Yoshua Bengio | 202 | 1033 | 420313 |

Alan C. Evans | 183 | 866 | 134642 |

Richard H. Friend | 169 | 1182 | 140032 |

Anders Björklund | 165 | 769 | 84268 |

Charles N. Serhan | 158 | 728 | 84810 |

Fernando Rivadeneira | 146 | 628 | 86582 |

C. Dallapiccola | 136 | 1717 | 101947 |

Michael J. Meaney | 136 | 604 | 81128 |

Claude Leroy | 135 | 1170 | 88604 |

Georges Azuelos | 134 | 1294 | 90690 |

Phillip Gutierrez | 133 | 1391 | 96205 |

Danny Miller | 133 | 512 | 71238 |

Henry T. Lynch | 133 | 925 | 86270 |

Stanley Nattel | 132 | 778 | 65700 |

Lucie Gauthier | 132 | 679 | 64794 |