scispace - formally typeset
Search or ask a question
Institution

Université de Montréal

EducationMontreal, Quebec, Canada
About: Université de Montréal is a education organization based out in Montreal, Quebec, Canada. It is known for research contribution in the topics: Population & Poison control. The organization has 45641 authors who have published 100476 publications receiving 4004007 citations. The organization is also known as: University of Montreal & UdeM.


Papers
More filters
Journal ArticleDOI
TL;DR: The current knowledge regarding the role of proinflammatory cytokines in the pathophysiology of OA is discussed and the potential of anticytokine therapy in the treatment of this disease is addressed.
Abstract: Osteoarthritis (OA) is associated with cartilage destruction, subchondral bone remodeling and inflammation of the synovial membrane, although the etiology and pathogenesis underlying this debilitating disease are poorly understood. Secreted inflammatory molecules, such as proinflammatory cytokines, are among the critical mediators of the disturbed processes implicated in OA pathophysiology. Interleukin (IL)-1β and tumor necrosis factor (TNF), in particular, control the degeneration of articular cartilage matrix, which makes them prime targets for therapeutic strategies. Animal studies provide support for this approach, although only a few clinical studies have investigated the efficacy of blocking these proinflammatory cytokines in the treatment of OA. Apart from IL-1β and TNF, several other cytokines including IL-6, IL-15, IL-17, IL-18, IL-21, leukemia inhibitory factor and IL-8 (a chemokine) have also been shown to be implicated in OA and could possibly be targeted therapeutically. This Review discusses the current knowledge regarding the role of proinflammatory cytokines in the pathophysiology of OA and addresses the potential of anticytokine therapy in the treatment of this disease.

1,962 citations

Journal ArticleDOI
01 Oct 2006-Ecology
TL;DR: It is shown that variation partitioning as currently applied in canonical analysis is biased, and appropriate unbiased estimators are presented to consider so that comparisons between fractions or, eventually, between different canonical models are meaningful.
Abstract: Establishing relationships between species distributions and environmental characteristics is a major goal in the search for forces driving species distributions. Canonical ordinations such as redundancy analysis and canonical correspondence analysis are invaluable tools for modeling communities through environmental predictors. They provide the means for conducting direct explanatory analysis in which the association among species can be studied according to their common and unique relationships with the environmental variables and other sets of predictors of interest, such as spatial variables. Variation partitioning can then be used to test and determine the likelihood of these sets of predictors in explaining patterns in community structure. Although variation partitioning in canonical analysis is routinely used in ecological analysis, no effort has been reported in the literature to consider appropriate estimators so that comparisons between fractions or, eventually, between different canonical models are meaningful. In this paper, we show that variation partitioning as currently applied in canonical analysis is biased. We present appropriate unbiased estimators. In addition, we outline a statistical test to compare fractions in canonical analysis. The question addressed by the test is whether two fractions of variation are significantly different from each other. Such assessment provides an important step toward attaining an understanding of the factors patterning community structure. The test is shown to have correct Type I error rates and good power for both redundancy analysis and canonical correspondence analysis.

1,947 citations

Journal ArticleDOI
TL;DR: This article reviews theoretical and empirical work using the allostatic load model vis-à-vis the effects of chronic stress on physical and mental health and proposes policies for promoting successful aging.

1,944 citations

Journal ArticleDOI
27 Jan 1994-Nature
TL;DR: This article showed that primary productivity in more diverse plant communities is more resistant to, and recovers more fully from, a major drought and that each additional species lost from our grasslands had a progressively greater impact on drought resistance.
Abstract: One of the ecological tenets justifying conservation of biodiversity is that diversity begets stability. Impacts of biodiversity on population dynamics and ecosystem functioning have long been debated1–7, however, with many theoretical explorations2–6,8–11 but few field studies12–15. Here we describe a long-term study of grasslands16,17 which shows that primary productivity in more diverse plant communities is more resistant to, and recovers more fully from, a major drought. The curvilinear relationship we observe suggests that each additional species lost from our grasslands had a progressively greater impact on drought resistance. Our results support the diversity—stability hypothesis5,6,18,19, but not the alternative hypothesis that most species are functionally redundant19–21. This study implies that the preservation of biodiversity is essential for the maintenance of stable productivity in ecosystems.

1,941 citations

16 Aug 1996
TL;DR: This paper showed that primary productivity in more diverse plant communities is more resistant to, and recovers more fully from, a major drought and that each additional species lost from our grasslands had a progressively greater impact on drought resistance.
Abstract: One of the ecological tenets justifying conservation of biodiversity is that diversity begets stability. Impacts of biodiversity on population dynamics and ecosystem functioning have long been debated1–7, however, with many theoretical explorations2–6,8–11 but few field studies12–15. Here we describe a long-term study of grasslands16,17 which shows that primary productivity in more diverse plant communities is more resistant to, and recovers more fully from, a major drought. The curvilinear relationship we observe suggests that each additional species lost from our grasslands had a progressively greater impact on drought resistance. Our results support the diversity—stability hypothesis5,6,18,19, but not the alternative hypothesis that most species are functionally redundant19–21. This study implies that the preservation of biodiversity is essential for the maintenance of stable productivity in ecosystems.

1,932 citations


Authors

Showing all 45957 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
Alan C. Evans183866134642
Richard H. Friend1691182140032
Anders Björklund16576984268
Charles N. Serhan15872884810
Fernando Rivadeneira14662886582
C. Dallapiccola1361717101947
Michael J. Meaney13660481128
Claude Leroy135117088604
Georges Azuelos134129490690
Phillip Gutierrez133139196205
Danny Miller13351271238
Henry T. Lynch13392586270
Stanley Nattel13277865700
Lucie Gauthier13267964794
Network Information
Related Institutions (5)
University of Toronto
294.9K papers, 13.5M citations

96% related

University of Pennsylvania
257.6K papers, 14.1M citations

93% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

92% related

University of Minnesota
257.9K papers, 11.9M citations

92% related

Harvard University
530.3K papers, 38.1M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023118
2022485
20216,077
20205,753
20195,212
20184,696