scispace - formally typeset
Search or ask a question
Institution

Université de Montréal

EducationMontreal, Quebec, Canada
About: Université de Montréal is a education organization based out in Montreal, Quebec, Canada. It is known for research contribution in the topics: Population & Poison control. The organization has 45641 authors who have published 100476 publications receiving 4004007 citations. The organization is also known as: University of Montreal & UdeM.


Papers
More filters
Journal ArticleDOI
TL;DR: Current knowledge of the bone-biomaterial interface is reviewed and methods being investigated for controlling it, including biochemical methods of surface modification, which immobilize molecules on biomaterials for the purpose of inducing specific cell and tissue responses.

1,252 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the developmental course of physical aggression in childhood and analyzed its linkage to violent and nonviolent offending outcomes in adolescence and found that among boys there is continuity in problem behavior from childhood to adolescence.
Abstract: This study used data from 6 sites and 3 countries to examine the developmental course of physical aggression in childhood and to analyze its linkage to violent and nonviolent offending outcomes in adolescence The results indicate that among boys there is continuity in problem behavior from childhood to adolescence and that such continuity is especially acute when early problem behavior takes the form of physical aggression Chronic physical aggression during the elementary school years specifically increases the risk for continued physical violence as well as other nonviolent forms of delinquency during adolescence However, this conclusion is reserved primarily for boys, because the results indicate no clear linkage between childhood physical aggression and adolescent offending among female samples despite notable similarities across male and female samples in the developmental course of physical aggression in childhood

1,245 citations

Journal ArticleDOI
13 Feb 2008-JAMA
TL;DR: For patients with acute lung injury and acute respiratory distress syndrome, a multifaceted protocolized ventilation strategy designed to recruit and open the lung resulted in no significant difference in all-cause hospital mortality or barotrauma compared with an established low-tidal-volume protocolized breathing strategy.
Abstract: Context Low-tidal-volume ventilation reduces mortality in critically ill patients with acute lung injury and acute respiratory distress syndrome. Instituting additional strategies to open collapsed lung tissue may further reduce mortality. Objective To compare an established low-tidal-volume ventilation strategy with an experimental strategy based on the original “open-lung approach,” combining low tidal volume, lung recruitment maneuvers, and high positive-end–expiratory pressure. Design and Setting Randomized controlled trial with concealed allocation and blinded data analysis conducted between August 2000 and March 2006 in 30 intensive care units in Canada, Australia, and Saudi Arabia. Patients Nine hundred eighty-three consecutive patients with acute lung injury and a ratio of arterial oxygen tension to inspired oxygen fraction not exceeding 250. Interventions The control strategy included target tidal volumes of 6 mL/kg of predicted body weight, plateau airway pressures not exceeding 30 cm H 2 O, and conventional levels of positive end-expiratory pressure (n = 508). The experimental strategy included target tidal volumes of 6 mL/kg of predicted body weight, plateau pressures not exceeding 40 cm H 2 O, recruitment maneuvers, and higher positive end-expiratory pressures (n = 475). Main Outcome Measure All-cause hospital mortality. Results Eighty-five percent of the 983 study patients met criteria for acute respiratory distress syndrome at enrollment. Tidal volumes remained similar in the 2 groups, and mean positive end-expiratory pressures were 14.6 (SD, 3.4) cm H 2 O in the experimental group vs 9.8 (SD, 2.7) cm H 2 O among controls during the first 72 hours (P < .001). All-cause hospital mortality rates were 36.4% and 40.4%, respectively (relative risk [RR], 0.90; 95% confidence interval [CI], 0.77-1.05; P = .19). Barotrauma rates were 11.2% and 9.1% (RR, 1.21; 95% CI, 0.83-1.75; P = .33). The experimental group had lower rates of refractory hypoxemia (4.6% vs 10.2%; RR, 0.54; 95% CI, 0.34-0.86; P = .01), death with refractory hypoxemia (4.2% vs 8.9%; RR, 0.56; 95% CI, 0.34-0.93; P = .03), and previously defined eligible use of rescue therapies (5.1% vs 9.3%; RR, 0.61; 95% CI, 0.38-0.99; P = .045). Conclusions For patients with acute lung injury and acute respiratory distress syndrome, a multifaceted protocolized ventilation strategy designed to recruit and open the lung resulted in no significant difference in all-cause hospital mortality or barotrauma compared with an established low-tidal-volume protocolized ventilation strategy. This “open-lung” strategy did appear to improve secondary end points related to hypoxemia and use of rescue therapies. Trial Registration clinicaltrials.gov Identifier: NCT00182195

1,243 citations

Journal ArticleDOI
TL;DR: Similarity network fusion substantially outperforms single data type analysis and established integrative approaches when identifying cancer subtypes and is effective for predicting survival.
Abstract: Similarity network fusion (SNF) is an approach to integrate multiple data types on the basis of similarity between biological samples rather than individual measurements. The authors demonstrate SNF by constructing patient networks to identify disease subtypes with differential survival profiles.

1,240 citations

Posted Content
TL;DR: A binary matrix multiplication GPU kernel is programmed with which it is possible to run the MNIST QNN 7 times faster than with an unoptimized GPU kernel, without suffering any loss in classification accuracy.
Abstract: We introduce a method to train Quantized Neural Networks (QNNs) --- neural networks with extremely low precision (e.g., 1-bit) weights and activations, at run-time. At train-time the quantized weights and activations are used for computing the parameter gradients. During the forward pass, QNNs drastically reduce memory size and accesses, and replace most arithmetic operations with bit-wise operations. As a result, power consumption is expected to be drastically reduced. We trained QNNs over the MNIST, CIFAR-10, SVHN and ImageNet datasets. The resulting QNNs achieve prediction accuracy comparable to their 32-bit counterparts. For example, our quantized version of AlexNet with 1-bit weights and 2-bit activations achieves $51\%$ top-1 accuracy. Moreover, we quantize the parameter gradients to 6-bits as well which enables gradients computation using only bit-wise operation. Quantized recurrent neural networks were tested over the Penn Treebank dataset, and achieved comparable accuracy as their 32-bit counterparts using only 4-bits. Last but not least, we programmed a binary matrix multiplication GPU kernel with which it is possible to run our MNIST QNN 7 times faster than with an unoptimized GPU kernel, without suffering any loss in classification accuracy. The QNN code is available online.

1,232 citations


Authors

Showing all 45957 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
Alan C. Evans183866134642
Richard H. Friend1691182140032
Anders Björklund16576984268
Charles N. Serhan15872884810
Fernando Rivadeneira14662886582
C. Dallapiccola1361717101947
Michael J. Meaney13660481128
Claude Leroy135117088604
Georges Azuelos134129490690
Phillip Gutierrez133139196205
Danny Miller13351271238
Henry T. Lynch13392586270
Stanley Nattel13277865700
Lucie Gauthier13267964794
Network Information
Related Institutions (5)
University of Toronto
294.9K papers, 13.5M citations

96% related

University of Pennsylvania
257.6K papers, 14.1M citations

93% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

92% related

University of Minnesota
257.9K papers, 11.9M citations

92% related

Harvard University
530.3K papers, 38.1M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023118
2022485
20216,077
20205,753
20195,212
20184,696