scispace - formally typeset
Search or ask a question
Institution

Université de Sherbrooke

EducationSherbrooke, Quebec, Canada
About: Université de Sherbrooke is a education organization based out in Sherbrooke, Quebec, Canada. It is known for research contribution in the topics: Population & Receptor. The organization has 14922 authors who have published 28783 publications receiving 792511 citations. The organization is also known as: Universite de Sherbrooke & Sherbrooke University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is found that forms of shared conventions such as imitation of body movements and of familiar actions are higher with two children paired with a human mediator, compared to two children pairs with a robot mediator.
Abstract: Unpredictability and complexity of social interactions are important challenges for a low functioning autistic child. The objective of this research is to study how a mobile robot can, by appearing more predictable, appealing and simple than a human being, facilitate reciprocal interaction such as imitative play. By conducting an exploratory study involving four children, we found that forms of shared conventions such as imitation of body movements and of familiar actions are higher with two children paired with a human mediator, compared to two children paired with a robot mediator. However, the two children paired with the robot mediator demonstrated increased shared attention (visual contact, physical proximity) and imitate facial expressions (smile) more than the children paired with the human mediator.

285 citations

Journal ArticleDOI
TL;DR: In this paper, a numerical method based on the control volume approach was used to solve the system of nonlinear and coupled governing equations of a turbulent flow of nanofluids, which are composed of saturated water and Al2O3 nanoparticles at various concentrations, flowing inside a tube submitted to uniform wall heat flux boundary condition.
Abstract: Purpose – To study the hydrodynamic and thermal behaviors of a turbulent flow of nanofluids, which are composed of saturated water and Al2O3 nanoparticles at various concentrations, flowing inside a tube submitted to a uniform wall heat flux boundary condition.Design/methodology/approach – A numerical method based on the “control‐volume” approach was used to solve the system of non‐linear and coupled governing equations. The classical κ‐e model was employed in order to model the turbulence, together with staggered non‐uniform grid system. The computer model, satisfactorily validated, was used to perform an extended parametric study covering wide ranges of the governing parameters. Information regarding the hydrodynamic and thermal behaviors of nanofluid flow are presented.Findings – Numerical results show that the inclusion of nanoparticles into the base fluid has produced an augmentation of the heat transfer coefficient, which has been found to increase appreciably with an increase of particles volume co...

285 citations

Journal ArticleDOI
TL;DR: Micelles of a new amphiphilic block copolymer that bear coumarin groups are sensitive to near infrared light by two-photon absorption of the chromophore and disruption of the micelles under irradiation results in release of both photocleaved cou marin and encapsulated nile red from the hydrophobic core of micelle into aqueous solution.
Abstract: Easily disrupted: Micelles of a new amphiphilic block copolymer that bear coumarin groups are sensitive to near infrared light by two-photon absorption of the chromophore. Disruption of the micelles under irradiation at 794 nm results in release of both photocleaved coumarin and encapsulated nile red from the hydrophobic core of micelle into aqueous solution, which results in opposing changes in fluorescence emission intensity.

285 citations

Journal ArticleDOI
20 Feb 2019-Cells
TL;DR: Astrocytes contribute to glutamate homeostasis in the CNS, by maintaining the balance between their opposing functions of glutamate uptake and release, and the main features of glutamate metabolism and glutamate excitotoxicity and its implication in CNS diseases are reviewed.
Abstract: Glutamate is one of the most prevalent neurotransmitters released by excitatory neurons in the central nervous system (CNS); however, residual glutamate in the extracellular space is, potentially, neurotoxic. It is now well-established that one of the fundamental functions of astrocytes is to uptake most of the synaptically-released glutamate, which optimizes neuronal functions and prevents glutamate excitotoxicity. In the CNS, glutamate clearance is mediated by glutamate uptake transporters expressed, principally, by astrocytes. Interestingly, recent studies demonstrate that extracellular glutamate stimulates Ca2+ release from the astrocytes’ intracellular stores, which triggers glutamate release from astrocytes to the adjacent neurons, mostly by an exocytotic mechanism. This released glutamate is believed to coordinate neuronal firing and mediate their excitatory or inhibitory activity. Therefore, astrocytes contribute to glutamate homeostasis in the CNS, by maintaining the balance between their opposing functions of glutamate uptake and release. This dual function of astrocytes represents a potential therapeutic target for CNS diseases associated with glutamate excitotoxicity. In this regard, we summarize the molecular mechanisms of glutamate uptake and release, their regulation, and the significance of both processes in the CNS. Also, we review the main features of glutamate metabolism and glutamate excitotoxicity and its implication in CNS diseases.

284 citations

Book
09 Feb 2010
TL;DR: The representation theory of finite dimensional associative algebras over an algebraically closed field has been studied in this article from the perspective of linear representations of finite-oriented graphs and homological algebra.
Abstract: This first part of a two-volume set offers a modern account of the representation theory of finite dimensional associative algebras over an algebraically closed field. The authors present this topic from the perspective of linear representations of finite-oriented graphs (quivers) and homological algebra. The self-contained treatment constitutes an elementary, up-to-date introduction to the subject using, on the one hand, quiver-theoretical techniques and, on the other, tilting theory and integral quadratic forms. Key features include many illustrative examples, plus a large number of end-of-chapter exercises. The detailed proofs make this work suitable both for courses and seminars, and for self-study. The volume will be of great interest to graduate students beginning research in the representation theory of algebras and to mathematicians from other fields.

284 citations


Authors

Showing all 15051 results

NameH-indexPapersCitations
Masashi Yanagisawa13052483631
Joseph V. Bonventre12659661009
Jeffrey L. Benovic9926430041
Alessio Fasano9647834580
Graham Pawelec8957227373
Simon C. Robson8855229808
Paul B. Corkum8857637200
Mario Leclerc8837435961
Stephen M. Collins8632025646
Ed Harlow8619061008
William D. Fraser8582730155
Jean Cadet8337224000
Vincent Giguère8222727481
Robert Gurny8139628391
Jean-Michel Gaillard8141026780
Network Information
Related Institutions (5)
McGill University
162.5K papers, 6.9M citations

95% related

University of British Columbia
209.6K papers, 9.2M citations

95% related

University of Toronto
294.9K papers, 13.5M citations

95% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

92% related

University of California, Irvine
113.6K papers, 5.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202384
2022189
20211,858
20201,805
20191,625
20181,543