Institution
Université libre de Bruxelles
Education•Brussels, Belgium•
About: Université libre de Bruxelles is a(n) education organization based out in Brussels, Belgium. It is known for research contribution in the topic(s): Population & Breast cancer. The organization has 24974 authors who have published 56969 publication(s) receiving 2084303 citation(s). The organization is also known as: ULB.
Topics: Population, Breast cancer, Large Hadron Collider, Receptor, Cancer
Papers published on a yearly basis
Papers
More filters
[...]
Cooper University Hospital1, St George's Hospital2, Memorial Hospital of Rhode Island3, Emory University4, University of Colorado Denver5, McMaster University6, Washington University in St. Louis7, University of Chicago8, University of Jena9, Rush University Medical Center10, University of Pittsburgh11, University of Pennsylvania12, Federal University of São Paulo13, University of Toronto14, Royal Perth Hospital15, Guy's and St Thomas' NHS Foundation Trust16, Université libre de Bruxelles17
TL;DR: An update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008 is provided.
Abstract: Objective:To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008.Design:A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at ke
8,851 citations
[...]
TL;DR: In this paper, results from searches for the standard model Higgs boson in proton-proton collisions at 7 and 8 TeV in the CMS experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.8 standard deviations.
Abstract: Results are presented from searches for the standard model Higgs boson in proton-proton collisions at sqrt(s)=7 and 8 TeV in the CMS experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.1 inverse femtobarns at 7 TeV and 5.3 inverse femtobarns at 8 TeV. The search is performed in five decay modes: gamma gamma, ZZ, WW, tau tau, and b b-bar. An excess of events is observed above the expected background, a local significance of 5.0 standard deviations, at a mass near 125 GeV, signalling the production of a new particle. The expected significance for a standard model Higgs boson of that mass is 5.8 standard deviations. The excess is most significant in the two decay modes with the best mass resolution, gamma gamma and ZZ; a fit to these signals gives a mass of 125.3 +/- 0.4 (stat.) +/- 0.5 (syst.) GeV. The decay to two photons indicates that the new particle is a boson with spin different from one.
8,357 citations
[...]
Wellcome Trust Sanger Institute1, Cambridge University Hospitals NHS Foundation Trust2, Wellcome Trust3, University of British Columbia4, University of Cambridge5, The Breast Cancer Research Foundation6, Oslo University Hospital7, University of Oslo8, University of Münster9, Université libre de Bruxelles10, German Cancer Research Center11, University of Iceland12, Erasmus University Rotterdam13, French Institute of Health and Medical Research14, Paris Descartes University15, University of Paris16, Broad Institute17, University of Bergen18, University of Oviedo19, University of Queensland20, University of Glasgow21, Harvard University22, United States Department of Veterans Affairs23, Netherlands Cancer Institute24, University of Kiel25, Radboud University Nijmegen26, King's College London27, Curie Institute28, University of New South Wales29, Bankstown Lidcombe Hospital30, University of Barcelona31
TL;DR: It is shown that hypermutation localized to small genomic regions, ‘kataegis’, is found in many cancer types, and this results reveal the diversity of mutational processes underlying the development of cancer.
Abstract: All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.
6,464 citations
[...]
TL;DR: The association of GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts.
Abstract: On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4} years. We infer the component masses of the binary to be between 0.86 and 2.26 M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28 deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8} Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.
5,922 citations
[...]
Kevork N. Abazajian1, Jennifer K. Adelman-McCarthy2, Marcel A. Agüeros3, S. Allam4 +220 more•Institutions (77)
TL;DR: A series of improvements to the spectroscopic reductions are described, including better flat fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities.
Abstract: This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11,663 deg^2 of imaging data, with most of the ~2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry on a 120° long, 2°.5 wide stripe along the celestial equator in the Southern Galactic Cap, with some regions covered by as many as 90 individual imaging runs. We include a co-addition of the best of these data, going roughly 2 mag fainter than the main survey over 250 deg^2. The survey has completed spectroscopy over 9380 deg^2; the spectroscopy is now complete over a large contiguous area of the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog, reducing the rms statistical errors at the bright end to 45 milliarcseconds per coordinate. We further quantify a systematic error in bright galaxy photometry due to poor sky determination; this problem is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities.
5,374 citations
Authors
Showing all 24974 results
Name | H-index | Papers | Citations |
---|---|---|---|
Karl J. Friston | 217 | 1267 | 217169 |
Yi Chen | 217 | 4342 | 293080 |
David Miller | 203 | 2573 | 204840 |
Jing Wang | 184 | 4046 | 202769 |
H. S. Chen | 179 | 2401 | 178529 |
Jie Zhang | 178 | 4857 | 221720 |
Jasvinder A. Singh | 176 | 2382 | 223370 |
D. M. Strom | 176 | 3167 | 194314 |
J. N. Butler | 172 | 2525 | 175561 |
Andrea Bocci | 172 | 2402 | 176461 |
Bradley Cox | 169 | 2150 | 156200 |
Marc Weber | 167 | 2716 | 153502 |
Hongfang Liu | 166 | 2356 | 156290 |
Guenakh Mitselmakher | 165 | 1951 | 164435 |
Yang Yang | 164 | 2704 | 144071 |