Institution

# Université Paris-Saclay

Education•Gif-sur-Yvette, France•

About: Université Paris-Saclay is a education organization based out in Gif-sur-Yvette, France. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 29307 authors who have published 43183 publications receiving 867404 citations.

Topics: Population, Large Hadron Collider, Laser, Higgs boson, Lepton

##### Papers published on a yearly basis

##### Papers

More filters

••

Eric S. Lander

^{1}, Lauren Linton^{1}, Bruce W. Birren^{1}, Chad Nusbaum^{1}+245 more•Institutions (29)TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.

Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

••

TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.

12,798 citations

••

Peter A. R. Ade

^{1}, Nabila Aghanim^{2}, Monique Arnaud^{3}, M. Ashdown^{4}+334 more•Institutions (82)TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.

Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations

••

Stanford University

^{1}, Cleveland Clinic^{2}, University of Toronto^{3}, Centre national de la recherche scientifique^{4}, Université Paris-Saclay^{5}, University of Paris-Sud^{6}, Rutgers University^{7}, Avaya^{8}, RAND Corporation^{9}, IBM^{10}, University of Pennsylvania^{11}, University of Western Australia^{12}, University of Minnesota^{13}TL;DR: A publicly available algorithm that requires only the same order of magnitude of computational effort as ordinary least squares applied to the full set of covariates is described.

Abstract: The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to select a parsimonious set for the efficient prediction of a response variable. Least Angle Regression (LARS), a new model selection algorithm, is a useful and less greedy version of traditional forward selection methods. Three main properties are derived: (1) A simple modification of the LARS algorithm implements the Lasso, an attractive version of ordinary least squares that constrains the sum of the absolute regression coefficients; the LARS modification calculates all possible Lasso estimates for a given problem, using an order of magnitude less computer time than previous methods. (2) A different LARS modification efficiently implements Forward Stagewise linear regression, another promising new model selection method; this connection explains the similar numerical results previously observed for the Lasso and Stagewise, and helps us understand the properties of both methods, which are seen as constrained versions of the simpler LARS algorithm. (3) A simple approximation for the degrees of freedom of a LARS estimate is available, from which we derive a Cp estimate of prediction error; this allows a principled choice among the range of possible LARS estimates. LARS and its variants are computationally efficient: the paper describes a publicly available algorithm that requires only the same order of magnitude of computational effort as ordinary least squares applied to the full set of covariates.

7,828 citations

••

Keith A. Olive

^{1}, Kaustubh Agashe^{2}, Claude Amsler^{3}, Mario Antonelli +222 more•Institutions (107)TL;DR: The review as discussed by the authors summarizes much of particle physics and cosmology using data from previous editions, plus 3,283 new measurements from 899 Japers, including the recently discovered Higgs boson, leptons, quarks, mesons and baryons.

Abstract: The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 Japers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosynthesis, Astrophysical Constants and Cosmological Parameters.

7,337 citations

##### Authors

Showing all 29679 results

Name | H-index | Papers | Citations |
---|---|---|---|

Guido Kroemer | 236 | 1404 | 246571 |

Patrick O. Brown | 183 | 755 | 200985 |

Didier Raoult | 173 | 3267 | 153016 |

Sophie Henrot-Versille | 171 | 957 | 157040 |

Philippe Ciais | 149 | 965 | 114503 |

Stanislas Dehaene | 149 | 456 | 86539 |

Marc Humbert | 149 | 1184 | 100577 |

Jean Bousquet | 145 | 1288 | 96769 |

Jean-François Cardoso | 145 | 373 | 115144 |

Marc Besancon | 143 | 1799 | 106869 |

Maksym Titov | 139 | 1573 | 128335 |

W. Kozanecki | 138 | 1498 | 99758 |

Nabila Aghanim | 137 | 416 | 100914 |

Yves Sirois | 137 | 1334 | 95714 |

Patrick Janot | 136 | 1485 | 93626 |