scispace - formally typeset
Search or ask a question

Showing papers by "Université Paris-Saclay published in 2018"


Journal ArticleDOI
05 Jan 2018-Science
TL;DR: It is found that primary resistance to ICIs can be attributed to abnormal gut microbiome composition, and Antibiotics inhibited the clinical benefit of ICIs in patients with advanced cancer.
Abstract: Immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 axis induce sustained clinical responses in a sizable minority of cancer patients. We found that primary resistance to ICIs can be attributed to abnormal gut microbiome composition. Antibiotics inhibited the clinical benefit of ICIs in patients with advanced cancer. Fecal microbiota transplantation (FMT) from cancer patients who responded to ICIs into germ-free or antibiotic-treated mice ameliorated the antitumor effects of PD-1 blockade, whereas FMT from nonresponding patients failed to do so. Metagenomics of patient stool samples at diagnosis revealed correlations between clinical responses to ICIs and the relative abundance of Akkermansia muciniphila Oral supplementation with A. muciniphila after FMT with nonresponder feces restored the efficacy of PD-1 blockade in an interleukin-12-dependent manner by increasing the recruitment of CCR9+CXCR3+CD4+ T lymphocytes into mouse tumor beds.

3,258 citations


Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +229 moreInstitutions (70)
TL;DR: In this paper, the cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies were presented, with good consistency with the standard spatially-flat 6-parameter CDM cosmology having a power-law spectrum of adiabatic scalar perturbations from polarization, temperature, and lensing separately and in combination.
Abstract: We present cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies. We find good consistency with the standard spatially-flat 6-parameter $\Lambda$CDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted "base $\Lambda$CDM" in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density $\Omega_c h^2 = 0.120\pm 0.001$, baryon density $\Omega_b h^2 = 0.0224\pm 0.0001$, scalar spectral index $n_s = 0.965\pm 0.004$, and optical depth $\tau = 0.054\pm 0.007$ (in this abstract we quote $68\,\%$ confidence regions on measured parameters and $95\,\%$ on upper limits). The angular acoustic scale is measured to $0.03\,\%$ precision, with $100\theta_*=1.0411\pm 0.0003$. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-$\Lambda$CDM cosmology, the inferred late-Universe parameters are: Hubble constant $H_0 = (67.4\pm 0.5)$km/s/Mpc; matter density parameter $\Omega_m = 0.315\pm 0.007$; and matter fluctuation amplitude $\sigma_8 = 0.811\pm 0.006$. We find no compelling evidence for extensions to the base-$\Lambda$CDM model. Combining with BAO we constrain the effective extra relativistic degrees of freedom to be $N_{\rm eff} = 2.99\pm 0.17$, and the neutrino mass is tightly constrained to $\sum m_ u< 0.12$eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base -$\Lambda$CDM at over $2\,\sigma$, which pulls some parameters that affect the lensing amplitude away from the base-$\Lambda$CDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. (Abridged)

3,077 citations


Journal ArticleDOI
TL;DR: Overall survival and objective response rates were significantly higher with nivolumab plus ipilimumab than with sunitinib among intermediate‐ and poor‐risk patients with previously untreated advanced renal‐cell carcinoma.
Abstract: Background Nivolumab plus ipilimumab produced objective responses in patients with advanced renal-cell carcinoma in a pilot study. This phase 3 trial compared nivolumab plus ipilimumab with sunitinib for previously untreated clear-cell advanced renal-cell carcinoma. Methods We randomly assigned adults in a 1:1 ratio to receive either nivolumab (3 mg per kilogram of body weight) plus ipilimumab (1 mg per kilogram) intravenously every 3 weeks for four doses, followed by nivolumab (3 mg per kilogram) every 2 weeks, or sunitinib (50 mg) orally once daily for 4 weeks (6-week cycle). The coprimary end points were overall survival (alpha level, 0.04), objective response rate (alpha level, 0.001), and progression-free survival (alpha level, 0.009) among patients with intermediate or poor prognostic risk. Results A total of 1096 patients were assigned to receive nivolumab plus ipilimumab (550 patients) or sunitinib (546 patients); 425 and 422, respectively, had intermediate or poor risk. At a median follo...

2,984 citations


Journal ArticleDOI
Rudi Appels1, Rudi Appels2, Kellye Eversole, Nils Stein3  +204 moreInstitutions (45)
17 Aug 2018-Science
TL;DR: This annotated reference sequence of wheat is a resource that can now drive disruptive innovation in wheat improvement, as this community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.
Abstract: An annotated reference sequence representing the hexaploid bread wheat genome in 21 pseudomolecules has been analyzed to identify the distribution and genomic context of coding and noncoding elements across the A, B, and D subgenomes. With an estimated coverage of 94% of the genome and containing 107,891 high-confidence gene models, this assembly enabled the discovery of tissue- and developmental stage-related coexpression networks by providing a transcriptome atlas representing major stages of wheat development. Dynamics of complex gene families involved in environmental adaptation and end-use quality were revealed at subgenome resolution and contextualized to known agronomic single-gene or quantitative trait loci. This community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.

2,118 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1235 moreInstitutions (132)
TL;DR: This analysis expands upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation of state and have spins within the range observed in Galactic binary neutron stars.
Abstract: On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation of state and have spins within the range observed in Galactic binary neutron stars. Our analysis employs two methods: the use of equation-of-state-insensitive relations between various macroscopic properties of the neutron stars and the use of an efficient parametrization of the defining function pðρÞ of the equation of state itself. From the LIGO and Virgo data alone and the first method, we measure the two neutron star radii as R1 ¼ 10.8 þ2.0 −1.7 km for the heavier star and R2 ¼ 10.7 þ2.1 −1.5 km for the lighter star at the 90% credible level. If we additionally require that the equation of state supports neutron stars with masses larger than 1.97 M⊙ as required from electromagnetic observations and employ the equation-of-state parametrization, we further constrain R1 ¼ 11.9 þ1.4 −1.4 km and R2 ¼ 11.9 þ1.4 −1.4 km at the 90% credible level. Finally, we obtain constraints on pðρÞ at supranuclear densities, with pressure at twice nuclear saturation density measured at 3.5 þ2.7 −1.7 × 1034 dyn cm−2 at the 90% level.

1,595 citations


Journal ArticleDOI
TL;DR: As adjuvant therapy for high‐risk stage III melanoma, 200 mg of pembrolizumab administered every 3 weeks for up to 1 year resulted in significantly longer recurrence‐free survival than placebo, with no new toxic effects identified.
Abstract: Background The programmed death 1 (PD-1) inhibitor pembrolizumab has been found to prolong progression-free and overall survival among patients with advanced melanoma. We conducted a phase 3 double-blind trial to evaluate pembrolizumab as adjuvant therapy in patients with resected, high-risk stage III melanoma. Methods Patients with completely resected stage III melanoma were randomly assigned (with stratification according to cancer stage and geographic region) to receive 200 mg of pembrolizumab (514 patients) or placebo (505 patients) intravenously every 3 weeks for a total of 18 doses (approximately 1 year) or until disease recurrence or unacceptable toxic effects occurred. Recurrence-free survival in the overall intention-to-treat population and in the subgroup of patients with cancer that was positive for the PD-1 ligand (PD-L1) were the primary end points. Safety was also evaluated. Results At a median follow-up of 15 months, pembrolizumab was associated with significantly longer recurrence...

1,225 citations


Posted ContentDOI
Spyridon Bakas1, Mauricio Reyes, Andras Jakab2, Stefan Bauer3  +435 moreInstitutions (111)
TL;DR: This study assesses the state-of-the-art machine learning methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018, and investigates the challenge of identifying the best ML algorithms for each of these tasks.
Abstract: Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumoris a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses thestate-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross tota lresection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.

1,165 citations


Journal ArticleDOI
Bela Abolfathi1, D. S. Aguado2, Gabriela Aguilar3, Carlos Allende Prieto2  +361 moreInstitutions (94)
TL;DR: SDSS-IV is the fourth generation of the Sloan Digital Sky Survey and has been in operation since 2014 July. as discussed by the authors describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14).
Abstract: The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014-2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V.

965 citations


Journal ArticleDOI
15 Mar 2018-Nature
TL;DR: The data suggest that 7–8% of the children in this cohort carry an unambiguous predisposing germline variant and that nearly 50% of paediatric neoplasms harbour a potentially druggable event, which is highly relevant for the design of future clinical trials.
Abstract: Pan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a pan-cancer cohort including 961 tumours from children, adolescents, and young adults, comprising 24 distinct molecular types of cancer. Using a standardized workflow, we identified marked differences in terms of mutation frequency and significantly mutated genes in comparison to previously analysed adult cancers. Genetic alterations in 149 putative cancer driver genes separate the tumours into two classes: small mutation and structural/copy-number variant (correlating with germline variants). Structural variants, hyperdiploidy, and chromothripsis are linked to TP53 mutation status and mutational signatures. Our data suggest that 7-8% of the children in this cohort carry an unambiguous predisposing germline variant and that nearly 50% of paediatric neoplasms harbour a potentially druggable event, which is highly relevant for the design of future clinical trials.

958 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy3  +1135 moreInstitutions (139)
TL;DR: In this article, the authors present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves.
Abstract: We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5– 20 deg2 requires at least three detectors of sensitivity within a factor of ∼2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

804 citations


Journal ArticleDOI
TL;DR: A review of the WIMP paradigm with focus on a few models which can be probed at best by these facilities, and Collider and Indirect Detection will not be neglected when they represent a complementary probe.
Abstract: Weakly Interacting Massive Particles (WIMPs) are among the best-motivated dark matter candidates. No conclusive signal, despite an extensive search program that combines, often in a complementary way, direct, indirect, and collider probes, has been detected so far. This situation might change in near future due to the advent of one/multi-TON Direct Detection experiments. We thus, find it timely to provide a review of the WIMP paradigm with focus on a few models which can be probed at best by these facilities. Collider and Indirect Detection, nevertheless, will not be neglected when they represent a complementary probe.

Journal ArticleDOI
TL;DR: The program includes an improved CRISPR array detection tool facilitating expert validation based on a rating system, prediction ofCRISPR orientation and a Cas protein detection and typing tool updated to match the latest classification scheme of these systems.
Abstract: CRISPR (clustered regularly interspaced short palindromic repeats) arrays and their associated (Cas) proteins confer bacteria and archaea adaptive immunity against exogenous mobile genetic elements, such as phages or plasmids. CRISPRCasFinder allows the identification of both CRISPR arrays and Cas proteins. The program includes: (i) an improved CRISPR array detection tool facilitating expert validation based on a rating system, (ii) prediction of CRISPR orientation and (iii) a Cas protein detection and typing tool updated to match the latest classification scheme of these systems. CRISPRCasFinder can either be used online or as a standalone tool compatible with Linux operating system. All third-party software packages employed by the program are freely available. CRISPRCasFinder is available at https://crisprcas.i2bc.paris-saclay.fr.

Journal ArticleDOI
TL;DR: Among men with nonmetastatic, castration‐resistant prostate cancer with a rapidly rising PSA level, enzalutamide treatment led to a clinically meaningful and significant 71% lower risk of metastasis or death than placebo.
Abstract: Background Men with nonmetastatic, castration-resistant prostate cancer and a rapidly rising prostate-specific antigen (PSA) level are at high risk for metastasis. We hypothesized that enz...

Journal ArticleDOI
TL;DR: The task force recommends an early imaging test in patients with suspected LVV, with ultrasound and MRI being the first choices in GCA and TAK, respectively, which are the first EULAR recommendations providing up-to-date guidance for the role of imaging in the diagnosis and monitoring of patients with (suspected) LVV.
Abstract: To develop evidence-based recommendations for the use of imaging modalities in primary large vessel vasculitis (LVV) including giant cell arteritis (GCA) and Takayasu arteritis (TAK). European League Against Rheumatism (EULAR) standardised operating procedures were followed. A systematic literature review was conducted to retrieve data on the role of imaging modalities including ultrasound, MRI, CT and [18F]-fluorodeoxyglucose positron emission tomography (PET) in LVV. Based on evidence and expert opinion, the task force consisting of 20 physicians, healthcare professionals and patients from 10 EULAR countries developed recommendations, with consensus obtained through voting. The final level of agreement was voted anonymously. A total of 12 recommendations have been formulated. The task force recommends an early imaging test in patients with suspected LVV, with ultrasound and MRI being the first choices in GCA and TAK, respectively. CT or PET may be used alternatively. In case the diagnosis is still in question after clinical examination and imaging, additional investigations including temporal artery biopsy and/or additional imaging are required. In patients with a suspected flare, imaging might help to better assess disease activity. The frequency and choice of imaging modalities for long-term monitoring of structural damage remains an individual decision; close monitoring for aortic aneurysms should be conducted in patients at risk for this complication. All imaging should be performed by a trained specialist using appropriate operational procedures and settings. These are the first EULAR recommendations providing up-to-date guidance for the role of imaging in the diagnosis and monitoring of patients with (suspected) LVV.

Journal ArticleDOI
TL;DR: Third-generation/long-read methods can directly detect epigenetic modifications on native DNA and allow whole-transcript sequencing without the need for assembly, which marks the third revolution in sequencing technology.

Journal ArticleDOI
TL;DR: The updated version of the EFSUMB guidelines on the application of non-hepatic contrast-enhanced ultrasound (CEUS) deals with the use of microbubble ultrasound contrast outside the liver in the many established and emerging applications.
Abstract: The updated version of the EFSUMB guidelines on the application of non-hepatic contrast-enhanced ultrasound (CEUS) deals with the use of microbubble ultrasound contrast outside the liver in the many established and emerging applications.

Journal ArticleDOI
TL;DR: A user-friendly, multi-platform freeware which enables the calculation of conventional, histogram-based, textural, and shape features from PET, SPECT, MR, CT, and US images, or from any combination of imaging modalities called LIFEx is presented.
Abstract: Textural and shape analysis is gaining considerable interest in medical imaging, particularly to identify parameters characterizing tumor heterogeneity and to feed radiomic models. Here, we present a free, multiplatform, and easy-to-use freeware called LIFEx, which enables the calculation of conventional, histogram-based, textural, and shape features from PET, SPECT, MR, CT, and US images, or from any combination of imaging modalities. The application does not require any programming skills and was developed for medical imaging professionals. The goal is that independent and multicenter evidence of the usefulness and limitations of radiomic features for characterization of tumor heterogeneity and subsequent patient management can be gathered. Many options are offered for interactive textural index calculation and for increasing the reproducibility among centers. The software already benefits from a large user community (more than 800 registered users), and interactions within that community are part of the development strategy.Significance: This study presents a user-friendly, multi-platform freeware to extract radiomic features from PET, SPECT, MR, CT, and US images, or any combination of imaging modalities. Cancer Res; 78(16); 4786-9. ©2018 AACR.


Journal ArticleDOI
TL;DR: The liver will be used as a model target tissue for gene transfer based on the large amount of data available from preclinical and clinical studies, and key achievements and emerging issues in the field are presented.
Abstract: In recent years, the number of clinical trials in which adeno-associated virus (AAV) vectors have been used for in vivo gene transfer has steadily increased. The excellent safety profile, together with the high efficiency of transduction of a broad range of target tissues, has established AAV vectors as the platform of choice for in vivo gene therapy. Successful application of the AAV technology has also been achieved in the clinic for a variety of conditions, including coagulation disorders, inherited blindness, and neurodegenerative diseases, among others. Clinical translation of novel and effective "therapeutic products" is, however, a long process that involves several cycles of iterations from bench to bedside that are required to address issues encountered during drug development. For the AAV vector gene transfer technology, several hurdles have emerged in both preclinical studies and clinical trials; addressing these issues will allow in the future to expand the scope of AAV gene transfer as a therapeutic modality for a variety of human diseases. In this review, we will give an overview on the biology of AAV vector, discuss the design of AAV-based gene therapy strategies for in vivo applications, and present key achievements and emerging issues in the field. We will use the liver as a model target tissue for gene transfer based on the large amount of data available from preclinical and clinical studies.

Journal ArticleDOI
TL;DR: Dabrafenib plus trametinib is the first regimen demonstrated to have robust clinical activity in BRAF V600E-mutated anaplastic thyroid cancer and was well tolerated, representing a meaningful therapeutic advance for this orphan disease.
Abstract: Purpose We report the efficacy and safety of dabrafenib (BRAF inhibitor) and trametinib (MEK inhibitor) combination therapy in BRAF V600E-mutated anaplastic thyroid cancer, a rare, aggressive, and highly lethal malignancy with poor patient outcomes and no systemic therapies with clinical benefit. Methods In this phase II, open-label trial, patients with predefined BRAF V600E-mutated malignancies received dabrafenib 150 mg twice daily and trametinib 2 mg once daily until unacceptable toxicity, disease progression, or death. The primary end point was investigator-assessed overall response rate. Secondary end points included duration of response, progression-free survival, overall survival, and safety. Results Sixteen patients with BRAF V600E-mutated anaplastic thyroid cancer were evaluable (median follow-up, 47 weeks; range, 4 to 120 weeks). All patients had received prior radiation treatment and/or surgery, and six had received prior systemic therapy. The confirmed overall response rate was 69% (11 of 16; 95% CI, 41% to 89%), with seven ongoing responses. Median duration of response, progression-free survival, and overall survival were not reached as a result of a lack of events, with 12-month estimates of 90%, 79%, and 80%, respectively. The safety population was composed of 100 patients who were enrolled with seven rare tumor histologies. Common adverse events were fatigue (38%), pyrexia (37%), and nausea (35%). No new safety signals were detected. Conclusion Dabrafenib plus trametinib is the first regimen demonstrated to have robust clinical activity in BRAF V600E-mutated anaplastic thyroid cancer and was well tolerated. These findings represent a meaningful therapeutic advance for this orphan disease.

Journal ArticleDOI
TL;DR: Pretreatment LIPI, combining dNLR greater than 3 and LDH greater than upper limit of normal (ULN) was correlated with worse outcomes for ICI, but not for chemotherapy, suggesting that LIPi can serve as a potentially useful tool when selecting ICI treatment.
Abstract: Importance Derived neutrophils/(leukocytes minus neutrophils) ratio (dNLR) and lactate dehydrogenase (LDH) level have been correlated with immune checkpoint inhibitor (ICI) outcomes in patients with melanoma. Objective To determine whether pretreatment dNLR and LDH are associated with resistance to ICIs in patients with advanced non–small cell lung cancer (NSCLC). Design, Setting, and Participants Multicenter retrospective study with a test (n = 161) and a validation set (n = 305) treated with programmed death 1/programmed death ligand 1 (PD-1/PD-L1) inhibitors in 8 European centers, and a control cohort (n = 162) treated with chemotherapy only. Complete blood cell counts, LDH, and albumin levels were measured before ICI treatment. A lung immune prognostic index (LIPI) based on dNLR greater than 3 and LDH greater than upper limit of normal (ULN) was developed, characterizing 3 groups (good, 0 factors; intermediate, 1 factor; poor, 2 factors). Main Outcomes and Measures The primary end point was overall survival (OS). Secondary end points were progression-free survival (PFS) and disease control rate (DCR). Results In the pooled ICI cohort (N = 466), 301 patients (65%) were male, 422 (90%) were current or former smokers, and 401 (87%) had performance status of 1 or less; median age at diagnosis was 62 (range, 29-86) years; 270 (58%) had adenocarcinoma and 159 (34%) had squamous histologic subtype. Among 129 patients with PD-L1 data, 96 (74%) had PD-L1 of at least 1% by immunohistochemical analysis, and 33 (26%) had negative results. In the test cohort, median PFS and OS were 3 (95% CI, 2-4) and 10 (95% CI, 8-13) months, respectively. A dNLR greater than 3 and LDH greater than ULN were independently associated with OS (hazard ratio [HR] 2.22; 95% CI, 1.23-4.01 and HR, 2.51; 95% CI, 1.32-4.76, respectively). Median OS for poor, intermediate, and good LIPI was 3 months (95% CI, 1 month to not reached [NR]), 10 months (95% CI, 8 months to NR), and 34 months (95% CI, 17 months to NR), respectively, and median PFS was 2.0 (95% CI, 1.7-4.0), 3.7 (95% CI, 3.0-4.8), and 6.3 (95% CI, 5.0-8.0) months (bothP Conclusions and Relevance Pretreatment LIPI, combining dNLR greater than 3 and LDH greater than ULN, was correlated with worse outcomes for ICI, but not for chemotherapy, suggesting that LIPI can serve as a potentially useful tool when selecting ICI treatment, raising the hypothesis that the LIPI might be useful for identifying patients unlikely to benefit from treatment with an ICI.

Journal ArticleDOI
TL;DR: This Galaxy‐supported pipeline, called FROGS, is designed to analyze large sets of amplicon sequences and produce abundance tables of Operational Taxonomic Units (OTUs) and their taxonomic affiliation to highlight databases conflicts and uncertainties.
Abstract: Motivation Metagenomics leads to major advances in microbial ecology and biologists need user friendly tools to analyze their data on their own. Results This Galaxy-supported pipeline, called FROGS, is designed to analyze large sets of amplicon sequences and produce abundance tables of Operational Taxonomic Units (OTUs) and their taxonomic affiliation. The clustering uses Swarm. The chimera removal uses VSEARCH, combined with original cross-sample validation. The taxonomic affiliation returns an innovative multi-affiliation output to highlight databases conflicts and uncertainties. Statistical results and numerous graphical illustrations are produced along the way to monitor the pipeline. FROGS was tested for the detection and quantification of OTUs on real and in silico datasets and proved to be rapid, robust and highly sensitive. It compares favorably with the widespread mothur, UPARSE and QIIME. Availability and implementation Source code and instructions for installation: https://github.com/geraldinepascal/FROGS.git. A companion website: http://frogs.toulouse.inra.fr. Contact geraldine.pascal@inra.fr. Supplementary information Supplementary data are available at Bioinformatics online.

Journal ArticleDOI
22 Mar 2018-ACS Nano
TL;DR: It is shown through high-resolution in situ synchrotron XRD measurements that CsPbI3 can be undercooled below its transition temperature and temporarily maintained in its perovskite structure down to room temperature, stabilizing a metastable perovkite polytype (black γ-phase) crucial for photovoltaic applications.
Abstract: Hybrid organic–inorganic perovskites emerged as a new generation of absorber materials for high-efficiency low-cost solar cells in 2009. Very recently, fully inorganic perovskite quantum dots also led to promising efficiencies, making them a potentially stable and efficient alternative to their hybrid cousins. Currently, the record efficiency is obtained with CsPbI3, whose crystallographical characterization is still limited. Here, we show through high-resolution in situ synchrotron XRD measurements that CsPbI3 can be undercooled below its transition temperature and temporarily maintained in its perovskite structure down to room temperature, stabilizing a metastable perovskite polytype (black γ-phase) crucial for photovoltaic applications. Our analysis of the structural phase transitions reveals a highly anisotropic evolution of the individual lattice parameters versus temperature. Structural, vibrational, and electronic properties of all the experimentally observed black phases are further inspected base...

Proceedings ArticleDOI
05 Oct 2018
TL;DR: This paper presents three fully convolutional neural network architectures which perform change detection using a pair of coregistered images, and proposes two Siamese extensions of fully Convolutional networks which use heuristics about the current problem to achieve the best results.
Abstract: This paper presents three fully convolutional neural network architectures which perform change detection using a pair of coregistered images. Most notably, we propose two Siamese extensions of fully convolutional networks which use heuristics about the current problem to achieve the best results in our tests on two open change detection datasets, using both RGB and multispectral images. We show that our system is able to learn from scratch using annotated change detection images. Our architectures achieve better performance than previously proposed methods, while being at least 500 times faster than related systems. This work is a step towards efficient processing of data from large scale Earth observation systems such as Copernicus or Landsat.

Journal ArticleDOI
TL;DR: Gene therapy with autologous CD34+ cells transduced with the BB305 vector reduced or eliminated the need for long‐term red‐cell transfusions in 22 patients with severe β‐thalassemia without serious adverse events related to the drug product.
Abstract: Background Donor availability and transplantation-related risks limit the broad use of allogeneic hematopoietic-cell transplantation in patients with transfusion-dependent β-thalassemia. After previously establishing that lentiviral transfer of a marked β-globin (βA-T87Q) gene could substitute for long-term red-cell transfusions in a patient with β-thalassemia, we wanted to evaluate the safety and efficacy of such gene therapy in patients with transfusion-dependent β-thalassemia. Methods In two phase 1–2 studies, we obtained mobilized autologous CD34+ cells from 22 patients (12 to 35 years of age) with transfusion-dependent β-thalassemia and transduced the cells ex vivo with LentiGlobin BB305 vector, which encodes adult hemoglobin (HbA) with a T87Q amino acid substitution (HbAT87Q). The cells were then reinfused after the patients had undergone myeloablative busulfan conditioning. We subsequently monitored adverse events, vector integration, and levels of replication-competent lentivirus. Efficac...

Journal ArticleDOI
Albert M. Sirunyan, Armen Tumasyan, Wolfgang Adam1, Federico Ambrogi1  +2238 moreInstitutions (159)
TL;DR: In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented.
Abstract: Many measurements and searches for physics beyond the standard model at the LHC rely on the efficient identification of heavy-flavour jets, i.e. jets originating from bottom or charm quarks. In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented. Heavy-flavour jet identification algorithms have been improved compared to those used previously at centre-of-mass energies of 7 and 8 TeV. For jets with transverse momenta in the range expected in simulated events, these new developments result in an efficiency of 68% for the correct identification of a b jet for a probability of 1% of misidentifying a light-flavour jet. The improvement in relative efficiency at this misidentification probability is about 15%, compared to previous CMS algorithms. In addition, for the first time algorithms have been developed to identify jets containing two b hadrons in Lorentz-boosted event topologies, as well as to tag c jets. The large data sample recorded in 2016 at a centre-of-mass energy of 13 TeV has also allowed the development of new methods to measure the efficiency and misidentification probability of heavy-flavour jet identification algorithms. The b jet identification efficiency is measured with a precision of a few per cent at moderate jet transverse momenta (between 30 and 300 GeV) and about 5% at the highest jet transverse momenta (between 500 and 1000 GeV).

Journal ArticleDOI
TL;DR: A global view of the studies that evaluated nano particles of metal‐organic frameworks' biomedical applications at the preclinical stage, when in vivo tests are described either for pharmacological applications or for toxicity evaluation is provided.
Abstract: In the past few years, numerous studies have demonstrated the great potential of nano particles of metal-organic frameworks (nanoMOFs) at the preclinical level for biomedical applications. Many of them were reported very recently based on their bioactive composition, anticancer application, or from a general drug delivery/theranostic perspective. In this review, the authors aim at providing a global view of the studies that evaluated MOFs' biomedical applications at the preclinical stage, when in vivo tests are described either for pharmacological applications or for toxicity evaluation. The authors first describe the current surface engineering approaches that are crucial to understand the in vivo behavior of the nanoMOFs. Finally, after a detailed and comprehensive analysis of the in vivo studies reported with MOFs so far, and considering the general evolution of the drug delivery science, the authors suggest new directions for future research in the use of nanoMOFs for biomedical applications.

Journal ArticleDOI
TL;DR: The theory and applications of optical micro and nanoresonators are presented from the underlying concept of their natural resonances, the so-called quasi-normal modes (QNMs), the latter are the basic constituents governing the response of resonators as mentioned in this paper.
Abstract: In this Review, the theory and applications of optical micro and nanoresonators are presented from the underlying concept of their natural resonances, the so-called quasi-normal modes (QNMs). The latter are the basic constituents governing the response of resonators. Characterized by complex frequencies, QNMs are initially loaded by a driving field and then decay exponentially in time due to power leakage or absorption. Here, the use of QNM-expansion formalisms to model these basic effects is explored. Such modal expansions that operate at complex frequencies distinguish from the current user habits in electromagnetic modeling, which rely on classical Maxwell equation solvers operating at real frequencies or in the time domain; they also bring much deeper physical insight into the analysis. An extensive overview of the historical background on QNMs in electromagnetism and a detailed discussion of recent relevant theoretical and numerical advances are therefore presented. Additionally, a concise description of the role of QNMs on a number of examples involving electromagnetic resonant fields and matter, including the interaction between quantum emitters and resonators (Purcell effect, weak and strong coupling, superradiance...), Fano interferences, the perturbation of resonance modes, and light transport and localization in disordered media is provided.

Journal ArticleDOI
TL;DR: In this article, a global fit to all available b → sl+l− data (l = e, μ) was performed in a model-independent way allowing for different patterns of New Physics.
Abstract: In the Standard Model (SM), the rare transitions where a bottom quark decays into a strange quark and a pair of light leptons exhibit a potential sensitivity to physics beyond the SM. In addition, the SM embeds Lepton Flavour Universality (LFU), leading to almost identical probabilities for muon and electron modes. The LHCb collaboration discovered a set of deviations from the SM expectations in decays to muons and also in ratios assessing LFU. Other experiments (Belle, ATLAS, CMS) found consistent measurements, albeit with large error bars. We perform a global fit to all available b → sl+l− data (l = e, μ) in a model-independent way allowing for different patterns of New Physics. For the first time, the NP hypothesis is preferred over the SM by 5 σ in a general case when NP can enter SM-like operators and their chirally-flipped partners. LFU violation is favoured with respect to LFU at the 3-4 σ level. We discuss the impact of LFU-violating New Physics on the observable P 5 ′ from B → K∗μ+μ− and we compare our estimate for long-distance charm contributions with an empirical model recently proposed by a group of LHCb experimentalists. Finally, we discuss NP models able to describe this consistent pattern of deviations.

Journal ArticleDOI
01 May 2018-Gut
TL;DR: The data suggest that patients with ALD might benefit from A. muciniphila supplementation, which promotes intestinal barrier integrity and ameliorates experimental ALD.
Abstract: Objective Alcoholic liver disease (ALD) is a global health problem with limited therapeutic options Intestinal barrier integrity and the microbiota modulate susceptibility to ALD Akkermansia muciniphila , a Gram-negative intestinal commensal, promotes barrier function partly by enhancing mucus production The aim of this study was to investigate microbial alterations in ALD and to define the impact of A muciniphila administration on the course of ALD Design The intestinal microbiota was analysed in an unbiased approach by 16S ribosomal DNA (rDNA) sequencing in a Lieber-DeCarli ALD mouse model, and faecal A muciniphila abundance was determined in a cohort of patients with alcoholic steatohepatitis (ASH) The impact of A muciniphila on the development of experimental acute and chronic ALD was determined in a preventive and therapeutic setting, and intestinal barrier integrity was analysed Results Patients with ASH exhibited a decreased abundance of faecal A muciniphila when compared with healthy controls that indirectly correlated with hepatic disease severity Ethanol feeding of wild-type mice resulted in a prominent decline in A muciniphila abundance Ethanol-induced intestinal A muciniphila depletion could be restored by oral A muciniphila supplementation Furthermore, A muciniphila administration when performed in a preventive setting decreased hepatic injury, steatosis and neutrophil infiltration A muciniphila also protected against ethanol-induced gut leakiness, enhanced mucus thickness and tight-junction expression In already established ALD, A muciniphila used therapeutically ameliorated hepatic injury and neutrophil infiltration Conclusion Ethanol exposure diminishes intestinal A muciniphila abundance in both mice and humans and can be recovered in experimental ALD by oral supplementation A muciniphila promotes intestinal barrier integrity and ameliorates experimental ALD Our data suggest that patients with ALD might benefit from A muciniphila supplementation