scispace - formally typeset
Search or ask a question
Institution

Universiti Teknologi Malaysia

EducationJohor Bahru, Malaysia
About: Universiti Teknologi Malaysia is a education organization based out in Johor Bahru, Malaysia. It is known for research contribution in the topics: Membrane & Control theory. The organization has 21644 authors who have published 39500 publications receiving 520635 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Antimicrobial packaging as mentioned in this paper is a novel development that incorporates antimicrobial agent into polymer film to suppress the activities of targeted microorganisms, however, antimicrobial packaging is still an extremely challenging technology and there are only a few commercialized products found in the market.
Abstract: Foods contamination leading to spoilage and growth of pathogenic microorganisms can happen when exposed to environment during slaughtering, processing, packaging and shipping. Although traditional food preservation methods such as drying, heating, freezing, fermentation and salting can extend food shelf-life, it is not consummate especially to inhibit the growth of pathogenic microorganisms that may endanger consumers' health. Antimicrobial packaging is a novel development that incorporates antimicrobial agent into polymer film to suppress the activities of targeted microorganisms. However, antimicrobial packaging is still an extremely challenging technology and there are only a few commercialized products found in the market. This review focuses on analyzing the antimicrobial agent development for the past decades till recent technology. The information about performance of antimicrobial packaging such as microbiology performance and physico-mechanical properties of the packaging film were discussed. It is expected such information would provide an overview as well as promote the development of antimicrobial packaging in the food related field and industry.

378 citations

Journal ArticleDOI
TL;DR: In this paper, mesostructured silica nanoparticles (MSN) and Ni loaded onto MSN (Ni/MSN) for the methanation of CO2 were prepared by the sol-gel and impregnation methods.
Abstract: Mesostructured silica nanoparticles (MSN) and Ni loaded onto MSN (Ni/MSN) for the methanation of CO2 were prepared by the sol–gel and impregnation methods. Catalytic testing was conducted in the temperature range of 423–723 K under atmospheric pressure in the presence of H2. Ni supported on MSN was compared with others types of support such as MCM-41 (Mobile Crystalline Material), HY (protonated Y zeolite), SiO2 and γ-Al2O3. The activity of CO2 methanation followed the order: Ni/MSN > Ni/MCM-41 > Ni/HY > Ni/SiO2 > Ni/γ-Al2O3. The nitrogen physisorption and pyrrole adsorbed IR spectroscopy results indicated that the high activity of Ni/MSN is due to the presence of both intra- and inter-particle porosity which led to the high concentration of basic sites. In addition, the correlation between N–H band intensity and the turnover frequency revealed that the methanation activity increased with increasing of the concentration of basic sites. The presence of defect sites or oxygen vacancies in MSN was responsible for the formation of surface carbon species, while Ni sites dissociated hydrogen to form atomic hydrogen. The surface carbon species then interacted with atomic hydrogen to form methane. The Ni/MSN catalyst performed with good stability and no deactivation up to 200 h.

375 citations

Journal ArticleDOI
TL;DR: In this article, the tensile properties of hybrid composites were found to increase substantially with increasing jute fibres loading as compared to oil palm-epoxy composite, and the overall use of hybrid system was found to be effective in increasing tensile and dynamic mechanical properties of the oil palm/polyurethane composite probably due to the enhanced fibre/matrix interface bonding.
Abstract: Hybrid composites prepared by hand lay-up technique by reinforcing jute and oil palm fibres with epoxy matrix. The tensile properties of hybrid composites were found to increase substantially with increasing jute fibres loading as compared to oil palm–epoxy composite. The nature of fibre/matrix interface was examined through scanning electron microscopy of tensile fracture samples. Addition of jute fibres to oil palm composite increases the storage modulus while damping factor shifts towards higher temperature region. Cole–Cole analysis was made to understand the phase behaviour of the composite samples. The hybrid composite with oil palm:jute (1:4) showed maximum damping behaviour and highest tensile properties. The overall use of hybrid system was found to be effective in increasing tensile and dynamic mechanical properties of the oil palm–epoxy composite probably due to the enhanced fibre/matrix interface bonding. The potential applications of the oil palm based hybrid composites in automobiles and building industry are going to increase in near future.

370 citations

Journal ArticleDOI
TL;DR: To optimize microalgal growth in mass culture system and lipid content, the effects of light intensity and photoperiod cycle on the growth of the marine microalgae, Nannochloropsis sp.

369 citations

Journal ArticleDOI
TL;DR: In this paper, a review provides a contemporary assessment of progresses recorded on synergistic interplay among catalyst components (active metals, support, promoters and binders) during dry reforming using state-of-the-art experimental and theoretical techniques.
Abstract: The abrupt and massive deactivation of methane dry reforming catalysts especially Ni-based is still a monumental impediment towards its industrialization and commercialization for production of value-added syngas via Fischer-Tropsch process. The need for further and more critical understanding of inherent and tailored interactions of catalyst components for performance and stability enhancement during reforming reaction cannot be over-emphasized. This review provides a contemporary assessment of progresses recorded on synergistic interplay among catalyst components (active metals, support, promoters and binders) during dry reforming using state-of-the-art experimental and theoretical techniques. Advancements achieved during interplay leading to improvements in properties of existing catalysts and discovery of novel ones were stated and expatiated. Reaction pathways, catalytic activities, selection of appropriate synthesis route and metal/support deactivation via sintering or carbon deposition have over time been successfully studied and explained using information from these crucial component interactions. This perspective describes the roles of these interactions and their applications towards development of robust catalysts configurations for successful industrial applications.

367 citations


Authors

Showing all 21852 results

NameH-indexPapersCitations
Xin Li114277871389
Muhammad Imran94305351728
Ahmad Fauzi Ismail93135740853
Bin Tean Teh9247133359
Muhammad Farooq92134137533
M. A. Shah9258337099
Takeshi Matsuura8554026188
Peter Willett7647929037
Peter C. Searson7437421806
Ozgur Kisi7347819433
Imran Ali7230019878
S.M. Sapuan7071319175
Peter J. Fleming6652924395
Mohammad Jawaid6550319471
Muhammad Tahir65163623892
Network Information
Related Institutions (5)
Universiti Putra Malaysia
36.7K papers, 647.6K citations

93% related

National University of Malaysia
41.2K papers, 552.6K citations

93% related

Universiti Sains Malaysia
39.3K papers, 655.4K citations

92% related

University of Malaya
51.4K papers, 1M citations

90% related

King Fahd University of Petroleum and Minerals
24K papers, 443.8K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022347
20212,811
20203,003
20193,148
20182,980