scispace - formally typeset
Search or ask a question
Institution

Universiti Teknologi Petronas

EducationIpoh, Malaysia
About: Universiti Teknologi Petronas is a education organization based out in Ipoh, Malaysia. It is known for research contribution in the topics: Adsorption & Ionic liquid. The organization has 6127 authors who have published 11284 publications receiving 119400 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide an in-depth critical analysis of the current research on non-functionalized and functionalized COPs with improved CO2 storage capacities and provide a background on the CO2 sources, capturing strategies, separation technologies, the thermo-kinetic aspects of CO2 adsorption, and synthesis methods.

54 citations

Journal ArticleDOI
TL;DR: In this article, the feasibility of preparing activated carbon from single step carbon dioxide activation was studied and the optimization of the activated carbons were carried out to study the effects of precursors (coconut fiber, rice husk, coconut shell, palm kernel shell and palm mesocarp fiber).

54 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the published literature on the use of recycled tyres and tiles to stabilize and enhance soft soils was carried out in this article, where the suitability of recycled tiles and tyres in soil stabilization has been discussed with regard to enhancement of strength and reduction of settlement.
Abstract: Tile waste is found in several forms including manufacturing slurry, manufacturing dust, and solid pieces from cracked, smashed, and rejected tiles at the construction sites. Worn out tyres that are no longer safe to be used by vehicles are either discarded or burned, adversely impacting natural ecosystems. These wastes are non-degradable and have a direct environmental impact. Poor waste management can lead to hazardous pollution, reduced soil fertility, and increased space consumption at disposal sites. The massive and increasing volume of the tile and tyre wastes calls for recycling of the materials for economical reuse, cleaner production, and greener development. One area for beneficial reuse of these waste materials is the improvement of engineering properties in soft soil. Structures on soft soils may experience several forms of damage due to insufficient bearing capacity and excessive settlement. Hence, soil stabilization is often necessary to ensure that the soft soil can meet the engineering requirements for stability. A comprehensive review of the published literature on the use of recycled tyres and tiles to stabilize and enhance soft soils was carried out. The properties of soft soil-waste mixtures such as liquid limit, plastic limit, plasticity index, compaction behaviour, unconfined compressive strength, and California Bearing Ratio have been presented. When used as partial replacement of cement, sand, and aggregate in concrete, the effect of tyre and tile waste on workability, durability, and compressive strength of the concrete has also been presented. Recycled tiles and tyres have been used with or without any other admixtures to sustainably improve the strength and bearing capacity of soil. The suitability of recycled tiles and tyres in soil stabilization has been discussed with regard to enhancement of strength and reduction of settlement. In addition, the beneficial effects of the recycled tiles and tyres, when they partially replace cement, sand or stone in concrete, have been discussed.

54 citations

Journal ArticleDOI
TL;DR: A hybrid system consisting of quaterthiophene derivative inserted into carbon nanotubes is studied in this article, where the authors investigate the encapsulation efficiency of the conjugated oligomers.
Abstract: A hybrid system consisting of quaterthiophene derivative inserted into carbon nanotubes is studied. Encapsulation efficiency of the conjugated oligomers in the hollow core of nanotubes is investigated by transmission electron microscopy and spatial-resolved electron energy loss spectroscopy. Infrared spectroscopy showed evidence of a significant positive charge transfer on the inserted oligothiophene. Raman spectra display different behaviors depending on the excitation energy and correlated to the quaterthiophene optical absorption energy. At high excitation wavelength (far from the oligomer resonance), radial breathing modes exhibit a significant upshift consistent with an encapsulation effect. At low excitation wavelength (close to the oligomer resonance), both the G-band shift and the low-frequency modes vanishing suggest a significant charge transfer between the quaterthiophene and the nanotubes.

53 citations

Journal ArticleDOI
TL;DR: In this paper, metal-organic frameworks were synthesized using the microwave assisted solvothermal method and characterized using scanning electron microscopy (SEM), Brunauer Emmett Teller (BET), powdered X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy.
Abstract: MIL-88(Fe) and NH2-MIL-88(Fe) metal-organic frameworks were synthesized using the microwave-assisted solvothermal method and were characterized using scanning electron microscopy (SEM), Brunauer Emmett Teller (BET), powdered X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. Relatively high surface areas with corresponding pore volumes of 1240 m2 g−1 and 0.7 m3 g−1, 941 m2 g−1 and 0.6 m3 g−1 were found for MIL-88(Fe) and NH2-MIL-88(Fe), respectively. The MOFs were evaluated as adsorbent for the removal of chrysene (CRY) in water. Important parameters that affect the adsorption such as contact time, initial concentration of CRY, pH and temperature were systematically studied. Adsorption isotherms using Langmuir, Freundlich and Temkin models were investigated. Other details of the adsorption process were also studied using kinetics and thermodynamics approaches. Additionally, molecular docking was used to unravel the nature of the adsorption between the MOFs and CRY. The reusability of the adsorbents was evaluated using regeneration studies. In conclusion, these MOFs exhibit favorable characteristics to be used for the removal of CRY from water.

53 citations


Authors

Showing all 6203 results

NameH-indexPapersCitations
Muhammad Imran94305351728
Muhammad Shahbaz92100134170
Muhammad Farooq92134137533
Markus P. Schlaich7447225674
Abdul Basit7457020078
Keat Teong Lee7127616745
Abdul Latif Ahmad6849022012
Cor J. Peters522629472
Suzana Yusup524378997
Muhammad Nadeem524099649
Umer Rashid5138110081
Hamidi Abdul Aziz493459083
Serge Palacin452018376
Muhammad Awais432726704
Zakaria Man432455301
Network Information
Related Institutions (5)
Universiti Teknologi Malaysia
39.5K papers, 520.6K citations

95% related

Universiti Putra Malaysia
36.7K papers, 647.6K citations

89% related

King Fahd University of Petroleum and Minerals
24K papers, 443.8K citations

89% related

Universiti Sains Malaysia
39.3K papers, 655.4K citations

88% related

National University of Malaysia
41.2K papers, 552.6K citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202338
2022128
20211,303
20201,316
2019978
20181,029