scispace - formally typeset
Search or ask a question
Institution

Universiti Teknologi Petronas

EducationIpoh, Malaysia
About: Universiti Teknologi Petronas is a education organization based out in Ipoh, Malaysia. It is known for research contribution in the topics: Adsorption & Ionic liquid. The organization has 6127 authors who have published 11284 publications receiving 119400 citations.
Topics: Adsorption, Ionic liquid, Catalysis, Membrane, Biomass


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors proposed a stand-alone hybrid system power pinch analysis (SAHPPA) approach for the design of off-grid distributed energy generation systems, which is particularly applicable for the application of renewable energy generation.
Abstract: This work proposes a novel approach called stand-alone hybrid system power pinch analysis (SAHPPA), which is particularly applicable for the design of off-grid distributed energy generation systems. The enhanced graphical tool employs new ways of utilising the recently introduced demand composite curve and supply composite curve while honouring and adapting fundamental energy systems engineering concepts. The SAHPPA method is capable of optimising the capacity of both the power generators and energy storage for biomass (i.e. non-intermittent) and solar photovoltaic (i.e. intermittent) energy technologies, which is a contribution to the emerging area of power pinch analysis. In addition, the procedure considers all possible efficiency losses in the overall system encompassing the charging–discharging and current inversion processes.

48 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed an asymmetric polysulfone/polyimide (PSF/PI) blended membranes at compositions of 80/20, 50/50 and 20/80 for N-methyl-2-pyrrolidone/dichloromethane (DCM/NMP) solvent mixtures, in order to understand the mechanism of membrane formation for CO 2 /CH 4 separation performance.

48 citations

Journal ArticleDOI
TL;DR: In this paper, a review of conventional approaches and green solvents for pretreatment of lignocellulosic biomass is presented, along with the advantages and disadvantages of pretreatment techniques.

48 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the synthesis of methanol by the direct hydrogenation of CO2 over Cu/ZrO2 catalyst at different ZrO 2 concentrations (5, 10, 15, 20 and 25 ) in a three-phase phase reactor.
Abstract: This article describes the synthesis of methanol by the direct hydrogenation of CO2 over Cu/ZrO2 catalyst at different ZrO2 concentrations (5, 10, 15, 20 and 25 wt.%) in a three-phase phase reactor. The techniques of N2 adsorption/desorption, x-ray diffraction, x-ray photoelectron spectroscopy, transmission electron microscopy, temperature-programmed desorption by CO2, N2O chemisorption and inductively coupled plasma optical emission spectrometry were employed for catalyst characterization. At a reaction temperature of 180 °C, pressure of 3.0 MP and 0.020 g/mL of the catalyst, the conversion of CO2 and the yield of methanol were 10% and 25 g/kg.h, respectively. Surface area of the metallic copper was increased from 8.1 to 9.5 m2/g with the presence of ZrO2 from 5 to 15 wt.%. The methanol turnover frequency exhibited a linear relationship with ZrO2 concentration. Methanol synthesis rate was progressively increased with increasing fraction of dispersed copper. A comparative study with the literature revealed better activity of this novel catalyst at relatively low reaction conditions.

48 citations

Book ChapterDOI
01 Jan 2017
TL;DR: In this paper, the effect of agglomeration on the stability of nanofluids can be reduced by introducing different mechanical and chemical techniques to prolong dispersion of suspended particles in liquids.
Abstract: Nanofluids are the dilute suspensions of nanomaterials with distinctive and enhanced features. Nanofluids can be used in a variety of industrial applications because of improved thermophysical properties. Stability of nanofluids is the only quandary factor which decreases the efficiency of such smart fluids in engineering applications. The information and studies on interaction of nanomaterials with the liquid have significant importance toward their usage in industrial applications. Agglomeration among particles is a common issue due to interactive forces, which effects the dispersion, rheology, and overall performance of nanosuspensions. Characterization of nanofluids plays an important role to evaluate the stability of nanofluids. The effect of agglomeration on the stability of nanofluids can be reduced by introducing different mechanical and chemical techniques to prolong dispersion of suspended particles in liquids. Complete understanding on the stability of nanofluids can lead to the preparation of different combinations of stable nanofluids with enhanced properties for variety of applications.

48 citations


Authors

Showing all 6203 results

NameH-indexPapersCitations
Muhammad Imran94305351728
Muhammad Shahbaz92100134170
Muhammad Farooq92134137533
Markus P. Schlaich7447225674
Abdul Basit7457020078
Keat Teong Lee7127616745
Abdul Latif Ahmad6849022012
Cor J. Peters522629472
Suzana Yusup524378997
Muhammad Nadeem524099649
Umer Rashid5138110081
Hamidi Abdul Aziz493459083
Serge Palacin452018376
Muhammad Awais432726704
Zakaria Man432455301
Network Information
Related Institutions (5)
Universiti Teknologi Malaysia
39.5K papers, 520.6K citations

95% related

Universiti Putra Malaysia
36.7K papers, 647.6K citations

89% related

King Fahd University of Petroleum and Minerals
24K papers, 443.8K citations

89% related

Universiti Sains Malaysia
39.3K papers, 655.4K citations

88% related

National University of Malaysia
41.2K papers, 552.6K citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202338
2022128
20211,303
20201,316
2019978
20181,029