scispace - formally typeset
Search or ask a question
Institution

University at Buffalo

EducationBuffalo, New York, United States
About: University at Buffalo is a education organization based out in Buffalo, New York, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 33773 authors who have published 63840 publications receiving 2278954 citations. The organization is also known as: UB & State University of New York at Buffalo.


Papers
More filters
Journal ArticleDOI
TL;DR: Orange juice intake with the HFHC meal prevented meal-induced oxidative and inflammatory stress, including the increase in endotoxin and TLR expression, and may help explain the mechanisms underlying postprandial oxidative stress and inflammation, pathogenesis of insulin resistance, and atherosclerosis.

292 citations

Journal ArticleDOI
TL;DR: Imagine if the authors could compute across phenotype data as easily as genomic data; this article calls for efforts to realize this vision and discusses the potential benefits.
Abstract: Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility.

292 citations

Journal ArticleDOI
Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam  +2333 moreInstitutions (195)
TL;DR: In this paper, the authors acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies:======BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ,======And FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS======(Colombia); MSES and CSF (Croatia); RPF (
Abstract: we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.).

292 citations

Proceedings ArticleDOI
14 Apr 2013
TL;DR: This paper constructs a new multiauthority CP-ABE scheme with efficient decryption, and design an efficient attribute revocation method that can achieve both forward security and backward security, and proposes an extensive data access control scheme (EDAC-MACS), which is secure under weaker security assumptions.
Abstract: Data access control is an effective way to ensure the data security in the cloud. However, due to data outsourcing and untrusted cloud servers, the data access control becomes a challenging issue in cloud storage systems. Existing access control schemes are no longer applicable to cloud storage systems, because they either produce multiple encrypted copies of the same data or require a fully trusted cloud server. Ciphertext-Policy Attribute-based Encryption (CP-ABE) is a promising technique for access control of encrypted data. It requires a trusted authority manages all the attributes and distributes keys in the system. In cloud storage systems, there are multiple authorities co-exist and each authority is able to issue attributes independently. However, existing CP-ABE schemes cannot be directly applied to data access control for multi-authority cloud storage systems, due to the inefficiency of decryption and revocation. In this paper, we propose DAC-MACS (Data Access Control for Multi-Authority Cloud Storage), an effective and secure data access control scheme with efficient decryption and revocation. Specifically, we construct a new multi-authority CP-ABE scheme with efficient decryption and also design an efficient attribute revocation method that can achieve both forward security and backward security. The analysis and the simulation results show that our DAC-MACS is highly efficient and provably secure under the security model.

291 citations

Journal ArticleDOI
TL;DR: A theory of spin manipulation of quasi-two-dimensional electrons by a time-dependent gate voltage applied to a quantum well is developed and the Dresselhaus and Rashba spin-orbit coupling mechanisms are shown to be rather efficient for this purpose.
Abstract: A theory of spin manipulation of quasi-two-dimensional (2D) electrons by a time-dependent gate voltage applied to a quantum well is developed. The Dresselhaus and Rashba spin-orbit coupling mechanisms are shown to be rather efficient for this purpose. The spin response to a perpendicular-to-plane electric field is due to a deviation from the strict 2D limit and is controlled by the ratios of the spin, cyclotron, and confinement frequencies. The dependence of this response on the magnetic field direction is indicative of the strengths of the competing spin-orbit coupling mechanisms.

291 citations


Authors

Showing all 34002 results

NameH-indexPapersCitations
Rakesh K. Jain2001467177727
Julie E. Buring186950132967
Anil K. Jain1831016192151
Donald G. Truhlar1651518157965
Roger A. Nicoll16539784121
Bruce L. Miller1631153115975
David R. Holmes1611624114187
Suvadeep Bose154960129071
Ashok Kumar1515654164086
Philip S. Yu1481914107374
Hugh A. Sampson14781676492
Aaron Dominguez1471968113224
Gregory R Snow1471704115677
J. S. Keller14498198249
C. Ronald Kahn14452579809
Network Information
Related Institutions (5)
University of Minnesota
257.9K papers, 11.9M citations

97% related

University of Washington
305.5K papers, 17.7M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

96% related

Columbia University
224K papers, 12.8M citations

96% related

University of Pennsylvania
257.6K papers, 14.1M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202388
2022363
20212,772
20202,695
20192,527
20182,500