scispace - formally typeset
Search or ask a question
Institution

University College Cork

EducationCork, Ireland
About: University College Cork is a education organization based out in Cork, Ireland. It is known for research contribution in the topics: Population & Irish. The organization has 12056 authors who have published 28452 publications receiving 958414 citations. The organization is also known as: Coláiste na hOllscoile Corcaigh & National University of Ireland, Cork.
Topics: Population, Irish, Gut flora, Microbiome, Casein


Papers
More filters
Journal ArticleDOI
TL;DR: This approach combines both cheminformatics (SMILES to 3D using OpenBabel) and computational chemistry (semi-empirical calculations using Gaussian09) to search the space of synthetically accessible molecular wires for those with optimal electronic structures.
Abstract: The area of organic photovoltaic materials has elicited great interest in both the scientific and technological communities due to its potential to deliver cheap and highly efficient solar cells [1]. To date, however, such so-called molecular wires have typically yielded energy conversion efficiencies of only ~5-6% despite a theoretical maximum of 13% [2]. We present an approach that uses a genetic algorithm to search the space of synthetically accessible molecular wires for those with optimal electronic structures. This approach combines both cheminformatics (SMILES to 3D using OpenBabel) and computational chemistry (semi-empirical calculations using Gaussian09). Using this method, we have found hundreds of candidates with predicted efficiencies over 8% including many with efficiencies over 10%.

188 citations

Journal ArticleDOI
TL;DR: To evaluate the ability of specific carbohydrates, including commercially available products, to support the growth of representatives of two well‐known groups of gut commensals, namely lactobacilli and bifidobacteria, a large number of products are tested.
Abstract: Aim - To evaluate the ability of specific carbohydrates, including commercially available products, to support the growth of representatives of two well-known groups of gut commensals, namely lactobacilli and bifidobacteria. Methods and Results - Sixty-eight bacterial strains, representing 29 human-derived lactobacilli and 39 bifidobacteria (both human- and animal-derived), were tested for their ability to metabolize 10 different carbohydrates. Analysis of growth and metabolic activity was performed using a combination of diagnostic parameters, such as final OD600, final pH, fermentation end products and growth rate. Conclusions - The data assembled in this study provide significant complementary and comparative information on the growth-promoting properties of a range of carbohydrates, while also investigating interspecies differences between lactobacilli and/or bifidobacteria with regard to their carbohydrate utilization abilities. Galacto-oligosaccharides (GOS) and lactulose were shown to support the most favourable growth characteristics, whereas relatively poor growth of lactobacilli and bifidobacteria was observed on inulin, maltodextrin and polydextrose. GOS/inulin (9 : 1) and fructo-oligosaccharides (FOS)/inulin mixtures supported mostly similar growth abilities to those obtained for GOS and FOS, respectively. Microbial consumption of GOS, as determined by high-performance anion-exchange chromatography with pulsed amperometric detection, was evident for both lactobacilli and bifidobacteria.

188 citations

Journal ArticleDOI
TL;DR: These experiments indicate how HMO metabolism permits the sharing of resources to maximise nutrient consumption from the diet and highlights the cooperative nature of bifidobacterial strains and their role as ‘foundation’ species in the infant ecosystem.
Abstract: Diet-microbe interactions play an important role in modulating the early-life microbiota, with Bifidobacterium strains and species dominating the gut of breast-fed infants. Here, we sought to explore how infant diet drives distinct bifidobacterial community composition and dynamics within individual infant ecosystems. Genomic characterisation of 19 strains isolated from breast-fed infants revealed a diverse genomic architecture enriched in carbohydrate metabolism genes, which was distinct to each strain, but collectively formed a pangenome across infants. Presence of gene clusters implicated in digestion of human milk oligosaccharides (HMOs) varied between species, with growth studies indicating that within single infants there were differences in the ability to utilise 2'FL and LNnT HMOs between strains. Cross-feeding experiments were performed with HMO degraders and non-HMO users (using spent or 'conditioned' media and direct co-culture). Further 1H-NMR analysis identified fucose, galactose, acetate, and N-acetylglucosamine as key by-products of HMO metabolism; as demonstrated by modest growth of non-HMO users on spend media from HMO metabolism. These experiments indicate how HMO metabolism permits the sharing of resources to maximise nutrient consumption from the diet and highlights the cooperative nature of bifidobacterial strains and their role as 'foundation' species in the infant ecosystem. The intra- and inter-infant bifidobacterial community behaviour may contribute to the diversity and dominance of Bifidobacterium in early life and suggests avenues for future development of new diet and microbiota-based therapies to promote infant health.

188 citations

Journal ArticleDOI
TL;DR: The current knowledge of Parkinson's disease including its etiology, some of the current symptomatic therapeutic modalities, and recent progress in neuroprotective and cell replacement therapies are reviewed.

188 citations

Journal ArticleDOI
TL;DR: Recent research into the modulatory factors that impact on the acquisition and development of the infant gut microbiota are summarized and advances in high-throughput sequencing are highlighted to highlight how these technologies have, and will continue to, fill gaps in knowledge with respect to the human intestinal microbiota.
Abstract: The colonization, development and maturation of the newborn gastrointestinal tract that begins immediately at birth and continues for two years, is modulated by numerous factors including mode of delivery, feeding regime, maternal diet/weight, probiotic and prebiotic use and antibiotic exposure pre-, peri- and post-natally. While in the past, culture-based approaches were used to assess the impact of these factors on the gut microbiota, these have now largely been replaced by culture-independent DNA-based approaches and most recently, high-throughput sequencing-based forms thereof. The aim of this review is to summarize recent research into the modulatory factors that impact on the acquisition and development of the infant gut microbiota, to outline the knowledge recently gained through the use of culture-independent techniques and, in particular, highlight advances in high-throughput sequencing and how these technologies have, and will continue to, fill gaps in our knowledge with respect to the human intestinal microbiota.

187 citations


Authors

Showing all 12300 results

NameH-indexPapersCitations
Stephen J. O'Brien153106293025
James J. Collins15166989476
J. Wouter Jukema12478561555
John F. Cryan12472358938
Fergus Shanahan11770551963
Timothy G. Dinan11668960561
John M. Starr11669548761
Gordon G. Wallace114126769095
Colin Hill11269354484
Robert Clarke11151290049
Douglas B. Kell11163450335
Thomas Bein10967742800
Steven C. Hayes10645051556
Åke Borg10544453835
Eamonn Martin Quigley10368539585
Network Information
Related Institutions (5)
University of Edinburgh
151.6K papers, 6.6M citations

92% related

University of Bristol
113.1K papers, 4.9M citations

92% related

Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

92% related

University of Manchester
168K papers, 6.4M citations

91% related

University College London
210.6K papers, 9.8M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202381
2022400
20212,153
20201,927
20191,679
20181,618