scispace - formally typeset
Search or ask a question
Institution

University College Cork

EducationCork, Ireland
About: University College Cork is a education organization based out in Cork, Ireland. It is known for research contribution in the topics: Population & Context (language use). The organization has 12056 authors who have published 28452 publications receiving 958414 citations. The organization is also known as: Coláiste na hOllscoile Corcaigh & National University of Ireland, Cork.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review the recent progress of information theory in optical communications and describe the current experimental results and associated advances in various individual technologies which increase the information capacity, and confirm the widely held belief that the reported capacities are approaching the fundamental limits imposed by signal-to-noise ratio and the distributed nonlinearity of conventional optical fibres, resulting in the reduction in the growth rate of communication capacity.
Abstract: We review the recent progress of information theory in optical communications, and describe the current experimental results and associated advances in various individual technologies which increase the information capacity. We confirm the widely held belief that the reported capacities are approaching the fundamental limits imposed by signal-to-noise ratio and the distributed non-linearity of conventional optical fibres, resulting in the reduction in the growth rate of communication capacity. We also discuss the techniques which are promising to increase and/or approach the information capacity limit.

493 citations

Journal ArticleDOI
TL;DR: It is suggested that gut‐microbial products can affect chromatin plasticity within their host's brain that in turn leads to changes in neuronal transcription and eventually alters host behaviour, and that the microbiota itself may be viewed as an epigenetic entity.
Abstract: To date, there is rapidly increasing evidence for host-microbe interaction at virtually all levels of complexity, ranging from direct cell-to-cell communication to extensive systemic signalling, and involving various organs and organ systems, including the central nervous system As such, the discovery that differential microbial composition is associated with alterations in behaviour and cognition has significantly contributed to establishing the microbiota-gut-brain axis as an extension of the well-accepted gut-brain axis concept Many efforts have been focused on delineating a role for this axis in health and disease, ranging from stress-related disorders such as depression, anxiety and irritable bowel syndrome to neurodevelopmental disorders such as autism There is also a growing appreciation of the role of epigenetic mechanisms in shaping brain and behaviour However, the role of epigenetics in informing host-microbe interactions has received little attention to date This is despite the fact that there are many plausible routes of interaction between epigenetic mechanisms and the host-microbiota dialogue From this new perspective we put forward novel, yet testable, hypotheses Firstly, we suggest that gut-microbial products can affect chromatin plasticity within their host's brain that in turn leads to changes in neuronal transcription and eventually alters host behaviour Secondly, we argue that the microbiota is an important mediator of gene-environment interactions Finally, we reason that the microbiota itself may be viewed as an epigenetic entity In conclusion, the fields of (neuro)epigenetics and microbiology are converging at many levels and more interdisciplinary studies are necessary to unravel the full range of this interaction

491 citations

Journal ArticleDOI
TL;DR: It is hypothesized that low UV-B doses cause 'eustress' (good stress) and that stimuli-specific signaling pathways pre-dispose plants to a state of low alert that includes activation of antioxidant defenses.

491 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a multisite analysis of the relationship between plant diversity and ecosystem functioning within the European BIODEPTH network of plant-diversity manipulation experiments, showing that communities with a higher diversity of species and functional groups were more productive and utilized resources more completely by intercepting more light, taking up more nitrogen, and occupying more of the available space.
Abstract: We present a multisite analysis of the relationship between plant diversity and ecosystem functioning within the European BIODEPTH network of plant-diversity manipulation experiments. We report results of the analysis of 11 variables addressing several aspects of key ecosystem processes like biomass production, resource use (space, light, and nitrogen), and decomposition, measured across three years in plots of varying plant species richness at eight different European grassland field sites. Differences among sites explained substantial and significant amounts of the variation of most of the ecosystem processes examined. However, against this background of geographic variation, all the aspects of plant diversity and composition we examined (i.e., both numbers and types of species and functional groups) produced significant, mostly positive impacts on ecosystem processes. Analyses using the additive partitioning method revealed that complementarity effects (greater net yields than predicted from monocultures due to resource partitioning, positive interactions, etc.) were stronger and more consistent than selection effects (the covariance between monoculture yield and change in yield in mixtures) caused by dominance of species with particular traits. In general, communities with a higher diversity of species and functional groups were more productive and utilized resources more completely by intercepting more light, taking up more nitrogen, and occupying more of the available space. Diversity had significant effects through both increased vegetation cover and greater nitrogen retention by plants when this resource was more abundant through N2 fixation by legumes. However, additional positive diversity effects remained even after controlling for differences in vegetation cover and for the presence of legumes in communities. Diversity effects were stronger on above- than belowground processes. In particular, clear diversity effects on decomposition were only observed at one of the eight sites. The ecosystem effects of plant diversity also varied between sites and years. In general, diversity effects were lowest in the first year and stronger later in the experiment, indicating that they were not transitional due to community establishment. These analyses of our complete ecosystem process data set largely reinforce our previous results, and those from comparable biodiversity experiments, and extend the generality of diversity–ecosystem functioning relationships to multiple sites, years, and processes.

487 citations

Journal ArticleDOI
TL;DR: Carbon plays a dual role as a catalyst or a catalyst support for chemical and enzymatic biomass transformation reactions due to its large specific surface area, high porosity, excellent electron conductivity, and relative chemical inertness as mentioned in this paper.
Abstract: Carbon plays a dual role as a catalyst or a catalyst support for chemical and enzymatic biomass transformation reactions due to its large specific surface area, high porosity, excellent electron conductivity, and relative chemical inertness. Advantageously, carbon materials can be prepared from residual biomass, an attractive property for decreasing the so-called “carbon-footprint” of a biomass transformation process. Carbon can be chemically functionalized and/or decorated with metallic nanoparticles and enzymes to impart or improve novel catalytic activity. Sulfonated porous carbon materials exhibit high reactivity in diversified catalytic reactions compared to their nonporous counterparts. However, the SO3H groups prevent the incorporation of hydrophobic molecules into the bulk, thereby causing hydrophobic acid-catalyzed reactions to proceed only on the surface. Metal and enzymatic catalysts on carbon supports have significant advantages over other oxide materials for different types of reactions. The ...

487 citations


Authors

Showing all 12300 results

NameH-indexPapersCitations
Stephen J. O'Brien153106293025
James J. Collins15166989476
J. Wouter Jukema12478561555
John F. Cryan12472358938
Fergus Shanahan11770551963
Timothy G. Dinan11668960561
John M. Starr11669548761
Gordon G. Wallace114126769095
Colin Hill11269354484
Robert Clarke11151290049
Douglas B. Kell11163450335
Thomas Bein10967742800
Steven C. Hayes10645051556
Åke Borg10544453835
Eamonn Martin Quigley10368539585
Network Information
Related Institutions (5)
University of Edinburgh
151.6K papers, 6.6M citations

92% related

University of Bristol
113.1K papers, 4.9M citations

92% related

Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

92% related

University of Manchester
168K papers, 6.4M citations

91% related

University College London
210.6K papers, 9.8M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202381
2022400
20212,153
20201,927
20191,679
20181,618