scispace - formally typeset
Search or ask a question
Institution

University College Cork

EducationCork, Ireland
About: University College Cork is a education organization based out in Cork, Ireland. It is known for research contribution in the topics: Population & Irish. The organization has 12056 authors who have published 28452 publications receiving 958414 citations. The organization is also known as: Coláiste na hOllscoile Corcaigh & National University of Ireland, Cork.
Topics: Population, Irish, Gut flora, Microbiome, Casein


Papers
More filters
Journal ArticleDOI
TL;DR: Although the gut microbiota remains a promising target for prevention and therapy, future research should assess confounders, particularly diet and psychotropic medications, and should examine microorganism function.

270 citations

Journal ArticleDOI
TL;DR: Critical values for water activity and water content express the level of water plasticization leading to glass transition in food storage.
Abstract: Amorphous, noncrystalline solids are typical of low water content and frozen foods. Solids in these foods, e.g., confectionary, dehydrated foods, cereal foods, and frozen foods, often form nonequilibrium glass-like structures. The glassy state of the solids forms during food processing in a reversible glass transition. Vitrification can occur in numerous glassy states that exhibit various relaxations around the glass transition. The success of freeze drying, spray drying, and extrusion and the stability of dehydrated foods against flow, collapse, and crystallization is based on the control of the glassy state during the dehydration process and storage. Encapsulation processes often use glass-forming materials to entrap dispersed components or improve retention of volatiles. Plasticization of the noncrystalline structures by temperature or water reduce relaxation times exponentially above the glass transition, which results in rapid deterioration. Critical values for water activity and water content expres...

269 citations

Journal ArticleDOI
TL;DR: The need for more examples of in vitro-in vivo correlations as a means of maximizing the development potential and commercial future for lipid-based formulations, and, promoting confidence within the industry for these delivery systems is highlighted.

268 citations

Journal ArticleDOI
TL;DR: In this paper, the authors showed that the overall mean diameter and zeta potential of the capped nanoparticles increased in a non-linear way with increasing molecular weight of the thiolated polyethylene glycol (mPEG-SH) ligand.
Abstract: Au nanoparticles with diameters ranging between 15 and 170 nm have been synthesised in aqueous solution using a seed-mediated growth method, employing hydroxylamine hydrochloride as a reducing agent. Thiolated polyethylene glycol (mPEG-SH) polymers, with molecular weights ranging from 2100 to 51 000 g mol−1, were used as efficient particle stabilising ligands. Dynamic light scattering and zeta potential measurements confirmed that the overall mean diameter and zeta potential of the capped nanoparticles increased in a non-linear way with increasing molecular weight of the mPEG-SH ligand. Electron microscopy and thermal gravimetric analysis of the polymer-capped nanoparticles, with a mean gold core diameter of 15 nm, revealed that the grafting density of the mPEG-SH ligands decreased from 3.93 to 0.31 PEG nm−2 as the molecular weight of the ligands increased from 2100 to 51 400 g mol−1 respectively, due to increased steric hindrance and polymer conformational entropy with increase in the PEG chain length. Additionally, the number of bound mPEG-SH ligands, with a molecular weight of 10 800 g mol−1, was found to increase in a non-linear way from 278 (σ = 42) to approximately 12 960 PEG (σ = 1227) when the mean Au core diameter increased from 15 to 115 nm respectively. However, the grafting density of mPEG10 000-SH ligands was higher on 15 nm Au nanoparticles and decreased slightly from 1.57 to 0.8 PEG nm−2 when the diameter increased; this effect can be attributed to the fact that smaller particles offer higher surface curvature, therefore allowing increased polymer loading per nm2. Au nanoparticles were also shown to interact with CT-26 cells without causing noticeable toxicity.

268 citations

Journal ArticleDOI
TL;DR: A framework in which these systems can be understood is defined, and a selection of papers from the case-based recommender systems literature is reviewed, covering the development of these systems over the last ten years.
Abstract: We describe recommender systems and especially case-based recommender systems. We define a framework in which these systems can be understood. The framework contrasts collaborative with case-based, reactive with proactive, single-shot with conversational, and asking with proposing. Within this framework, we review a selection of papers from the case-based recommender systems literature, covering the development of these systems over the last ten years.

267 citations


Authors

Showing all 12300 results

NameH-indexPapersCitations
Stephen J. O'Brien153106293025
James J. Collins15166989476
J. Wouter Jukema12478561555
John F. Cryan12472358938
Fergus Shanahan11770551963
Timothy G. Dinan11668960561
John M. Starr11669548761
Gordon G. Wallace114126769095
Colin Hill11269354484
Robert Clarke11151290049
Douglas B. Kell11163450335
Thomas Bein10967742800
Steven C. Hayes10645051556
Åke Borg10544453835
Eamonn Martin Quigley10368539585
Network Information
Related Institutions (5)
University of Edinburgh
151.6K papers, 6.6M citations

92% related

University of Bristol
113.1K papers, 4.9M citations

92% related

Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

92% related

University of Manchester
168K papers, 6.4M citations

91% related

University College London
210.6K papers, 9.8M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202381
2022400
20212,153
20201,927
20191,679
20181,618