scispace - formally typeset
Search or ask a question
Institution

University of Aberdeen

EducationAberdeen, United Kingdom
About: University of Aberdeen is a education organization based out in Aberdeen, United Kingdom. It is known for research contribution in the topics: Population & Randomized controlled trial. The organization has 21174 authors who have published 49962 publications receiving 2105479 citations. The organization is also known as: Aberdeen University.


Papers
More filters
Journal ArticleDOI
TL;DR: The findings do not support routine oral supplementation with calcium and vitamin D3, either alone or in combination, for the prevention of further fractures in previously mobile elderly people.

903 citations

Journal ArticleDOI
TL;DR: The development of drugs such as DFMO (alpha-difluoromethylornithine), a rationally designed anticancer agent, has revolutionized the authors' understanding of polyamine function in cell growth and provided 'proof of concept' that influencing polyamine metabolism and content within tumour cells will prevent tumour growth.
Abstract: Polyamines are essential for the growth and function of normal cells. They interact with various macromolecules, both electrostatically and covalently and, as a consequence, have a variety of cellular effects. The complexity of polyamine metabolism and the multitude of compensatory mechanisms that are invoked to maintain polyamine homoeostasis argue that these amines are critical to cell survival. The regulation of polyamine content within cells occurs at several levels, including transcription and translation. In addition, novel features such as the +1 frameshift required for antizyme production and the rapid turnover of several of the enzymes involved in the pathway make the regulation of polyamine metabolism a fascinating subject. The link between polyamine content and human disease is unequivocal, and significant success has been obtained in the treatment of a number of parasitic infections. Targeting the polyamine pathway as a means of treating cancer has met with limited success, although the development of drugs such as DFMO (alpha-difluoromethylornithine), a rationally designed anticancer agent, has revolutionized our understanding of polyamine function in cell growth and provided 'proof of concept' that influencing polyamine metabolism and content within tumour cells will prevent tumour growth. The more recent development of the polyamine analogues has been pivotal in advancing our understanding of the necessity to deplete all three polyamines to induce apoptosis in tumour cells. The current thinking is that the polyamine inhibitors/analogues may also be useful agents in the chemoprevention of cancer and, in this area, we may yet see a revival of DFMO. The future will be in adopting a functional genomics approach to identifying polyamine-regulated genes linked to either carcinogenesis or apoptosis.

896 citations

Journal ArticleDOI
TL;DR: This review aims to resolve issues by describing the historical context of bioelectricity, the fundamental principles of physics and physiology responsible for DC electric fields within cells and tissues, the cellular mechanisms for the effects of small electric fields on cell behavior, and the clinical potential for electric field treatment of damaged tissues.
Abstract: Direct-current (DC) electric fields are present in all developing and regenerating animal tissues, yet their existence and potential impact on tissue repair and development are largely ignored. This is primarily due to ignorance of the phenomenon by most researchers, some technically poor early studies of the effects of applied fields on cells, and widespread misunderstanding of the fundamental concepts that underlie bioelectricity. This review aims to resolve these issues by describing: 1) the historical context of bioelectricity, 2) the fundamental principles of physics and physiology responsible for DC electric fields within cells and tissues, 3) the cellular mechanisms for the effects of small electric fields on cell behavior, and 4) the clinical potential for electric field treatment of damaged tissues such as epithelia and the nervous system.

896 citations

Journal ArticleDOI
TL;DR: This is the first estimate of the prevalence and distribution of pain of predominantly neuropathic origin in the general population, using a previously validated and reliable data collection instrument.

892 citations

Journal ArticleDOI
15 Feb 1996-Nature
TL;DR: In this article, the authors show that exposing hyperaccumu-lator species of Alyssum to nickel elicits a large and proportional increase in the levels of free histidine, which is shown to be coordinated with nickel in vivo.
Abstract: A NUMBER of terrestrial plants accumulate large quantities of metals such as zinc, manganese, nickel, cobalt and copper in their shoots1. The largest group of these so-called 'metal hyperaccumulators' is found in the genus Alyssum, in which nickel concentrations can reach 3% of leaf dry biomass2,3. Apart from their intrinsic interest, plants exhibiting this trait could be of value in the decontamination of metal-polluted soils4–6. However, the biochemical basis of the capacity for metal accumulation has not been elucidated. Here we report that exposing hyperaccumu-lator species of Alyssum to nickel elicits a large and proportional increase in the levels of free histidine, which is shown to be coordinated with nickel in vivo. Moreover, supplying histidine to a non-accumulating species greatly increases both its nickel tolerance and capacity for nickel transport to the shoot, indicating that enhanced production of histidine is responsible for the nickel hyperaccumulation phenotype in Alyssum.

890 citations


Authors

Showing all 21424 results

NameH-indexPapersCitations
Paul M. Thompson1832271146736
Feng Zhang1721278181865
Ian J. Deary1661795114161
Peter A. R. Ade1621387138051
David W. Johnson1602714140778
Pete Smith1562464138819
Naveed Sattar1551326116368
John R. Hodges14981282709
Ruth J. F. Loos14264792485
Alan J. Silman14170892864
Michael J. Keating140116976353
David Price138168793535
John D. Scott13562583878
Aarno Palotie12971189975
Rajat Gupta126124072881
Network Information
Related Institutions (5)
University of Edinburgh
151.6K papers, 6.6M citations

95% related

University College London
210.6K papers, 9.8M citations

94% related

University of Manchester
168K papers, 6.4M citations

94% related

University of Oxford
258.1K papers, 12.9M citations

94% related

University of Cambridge
282.2K papers, 14.4M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023141
2022362
20212,195
20202,118
20191,846
20181,894