scispace - formally typeset
Search or ask a question
Institution

University of Adelaide

EducationAdelaide, South Australia, Australia
About: University of Adelaide is a education organization based out in Adelaide, South Australia, Australia. It is known for research contribution in the topics: Population & Poison control. The organization has 27251 authors who have published 79167 publications receiving 2671128 citations. The organization is also known as: The University of Adelaide & Adelaide University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the structural chemistry of organotin carboxylates is described, covering data acquired for mono-, di-and tri-organotin compounds and complexes and a brief discussion is given for organotin amino-acid derivatives.
Abstract: This review describes the structural chemistry of organotin carboxylates, covering data acquired for mono-, di- and tri-organotin compounds and complexes. A brief discussion is given for organotin amino-acid derivatives.

443 citations

Journal ArticleDOI
TL;DR: It is demonstrated that in normal human subjects the excitability of the cortical projection to hand muscles can be altered in a manner determined by the peripheral stimulus applied.
Abstract: The aim of this study was to determine whether prolonged, repetitive mixed nerve stimulation (duty cycle 1 s, 500 ms on-500 ms off, 10 Hz) of the ulnar nerve leads to a change in excitability of primary motor cortex in normal human subjects. Motor-evoked potentials (MEPs) generated in three intrinsic hand muscles [abductor digiti minimi (ADM), first dorsal interosseous (FDI) and abductor pollicis brevis (APB)] by focal transcranial magnetic stimulation were recorded during complete relaxation before and after a period of prolonged repetitive ulnar nerve stimulation at the wrist. Transcranial magnetic stimuli were applied at seven scalp sites separated by 1 cm: the optimal scalp site for eliciting MEPs in the target muscle (FDI), three sites medial to the optimal site and three sites lateral to the optimal stimulation site. The area of the MEPs evoked in the ulnar-(FDI, ADM) but not the median-innervated (APB) muscles was increased after prolonged ulnar nerve stimulation. Centre of gravity measures demonstrated that there was no significant difference in the distribution of cortical excitability after the peripheral stimulation. F-wave responses in the intrinsic hand muscles were not altered after prolonged ulnar nerve stimulation, suggesting that the changes in MEP areas were not the result of stimulus-induced increases in the excitability of spinal motoneurones. Control experiments employing transcranial electric stimulation provided no evidence for a spinal origin for the excitability changes. These results demonstrate that in normal human subjects the excitability of the cortical projection to hand muscles can be altered in a manner determined by the peripheral stimulus applied.

442 citations

Journal ArticleDOI
TL;DR: It is concluded that dietary selenium compounds should be considered prodrugs, whose biological activity will depend on the activity of the various metabolic pathways in, and the redox status of, cells and tissues.
Abstract: The biological activity of selenium is dependent upon its speciation We aim to integrate selenium speciation and metabolism into a discussion of the mechanisms by which selenium exerts its biological activity First, we present the current status of selenium in the prevention of cancer, cardiovascular and neurodegenerative diseases with particular attention paid to the results of major chemoprevention trials involving selenium supplementation A comprehensive review of the current understanding of the metabolism of common dietary selenium compounds – selenite, selenomethionine, methylselenocysteine and selenocystine – is presented, with discussion of the evidence for the various metabolic pathways and their products The antioxidant, prooxidant and other mechanisms of the dietary selenium compounds have been linked to their disease prevention and treatment properties The evidence for these various mechanisms – in vitro, in cells and in vivo – is evaluated with emphasis on the selenium metabolites involved We conclude that dietary selenium compounds should be considered prodrugs, whose biological activity will depend on the activity of the various metabolic pathways in, and the redox status of, cells and tissues These factors should be considered in future laboratory research and in selecting selenium compounds for trials of disease prevention and treatment by selenium supplementation

442 citations

Iosif Lazaridis1, Iosif Lazaridis2, Nick Patterson2, Alissa Mittnik3, Gabriel Renaud4, Swapan Mallick2, Swapan Mallick1, Karola Kirsanow5, Peter H. Sudmant6, Joshua G. Schraiber6, Joshua G. Schraiber7, Sergi Castellano4, Mark Lipson8, Bonnie Berger2, Bonnie Berger8, Christos Economou9, Ruth Bollongino5, Qiaomei Fu4, Kirsten I. Bos3, Susanne Nordenfelt2, Susanne Nordenfelt1, Heng Li2, Heng Li1, Cesare de Filippo4, Kay Prüfer4, Susanna Sawyer4, Cosimo Posth3, Wolfgang Haak10, Fredrik Hallgren11, Elin Fornander11, Nadin Rohland1, Nadin Rohland2, Dominique Delsate12, Michael Francken3, Jean-Michel Guinet12, Joachim Wahl, George Ayodo, Hamza A. Babiker13, Hamza A. Babiker14, Graciela Bailliet, Elena Balanovska, Oleg Balanovsky, Ramiro Barrantes15, Gabriel Bedoya16, Haim Ben-Ami17, Judit Bene18, Fouad Berrada19, Claudio M. Bravi, Francesca Brisighelli20, George B.J. Busby21, Francesco Calì, Mikhail Churnosov22, David E. C. Cole23, Daniel Corach24, Larissa Damba, George van Driem25, Stanislav Dryomov26, Jean-Michel Dugoujon27, Sardana A. Fedorova28, Irene Gallego Romero29, Marina Gubina, Michael F. Hammer30, Brenna M. Henn31, Tor Hervig32, Ugur Hodoglugil33, Aashish R. Jha29, Sena Karachanak-Yankova34, Rita Khusainova35, Elza Khusnutdinova35, Rick A. Kittles30, Toomas Kivisild36, William Klitz7, Vaidutis Kučinskas37, Alena Kushniarevich38, Leila Laredj39, Sergey Litvinov38, Theologos Loukidis40, Theologos Loukidis41, Robert W. Mahley42, Béla Melegh18, Ene Metspalu43, Julio Molina, Joanna L. Mountain, Klemetti Näkkäläjärvi44, Desislava Nesheva34, Thomas B. Nyambo45, Ludmila P. Osipova, Jüri Parik43, Fedor Platonov28, Olga L. Posukh, Valentino Romano46, Francisco Rothhammer47, Francisco Rothhammer48, Igor Rudan13, Ruslan Ruizbakiev49, Hovhannes Sahakyan50, Hovhannes Sahakyan38, Antti Sajantila51, Antonio Salas52, Elena B. Starikovskaya26, Ayele Tarekegn, Draga Toncheva34, Shahlo Turdikulova49, Ingrida Uktveryte37, Olga Utevska53, René Vasquez54, Mercedes Villena54, Mikhail Voevoda55, Cheryl A. Winkler56, Levon Yepiskoposyan50, Pierre Zalloua57, Pierre Zalloua1, Tatijana Zemunik58, Alan Cooper10, Cristian Capelli21, Mark G. Thomas41, Andres Ruiz-Linares41, Sarah A. Tishkoff59, Lalji Singh60, Kumarasamy Thangaraj61, Richard Villems38, Richard Villems43, Richard Villems62, David Comas63, Rem I. Sukernik26, Mait Metspalu38, Matthias Meyer4, Evan E. Eichler6, Joachim Burger5, Montgomery Slatkin7, Svante Pääbo4, Janet Kelso4, David Reich2, David Reich1, David Reich64, Johannes Krause4, Johannes Krause3 
Harvard University1, Broad Institute2, University of Tübingen3, Max Planck Society4, University of Mainz5, University of Washington6, University of California, Berkeley7, Massachusetts Institute of Technology8, Stockholm University9, University of Adelaide10, The Heritage Foundation11, National Museum of Natural History12, University of Edinburgh13, Sultan Qaboos University14, University of Costa Rica15, University of Antioquia16, Rambam Health Care Campus17, University of Pécs18, Al Akhawayn University19, Catholic University of the Sacred Heart20, University of Oxford21, Belgorod State University22, University of Toronto23, University of Buenos Aires24, University of Bern25, Russian Academy of Sciences26, Paul Sabatier University27, North-Eastern Federal University28, University of Chicago29, University of Arizona30, Stony Brook University31, University of Bergen32, Illumina33, Sofia Medical University34, Bashkir State University35, University of Cambridge36, Vilnius University37, Estonian Biocentre38, University of Strasbourg39, Amgen40, University College London41, Gladstone Institutes42, University of Tartu43, University of Oulu44, Muhimbili University of Health and Allied Sciences45, University of Palermo46, University of Chile47, University of Tarapacá48, Academy of Sciences of Uzbekistan49, Armenian National Academy of Sciences50, University of North Texas51, University of Santiago de Compostela52, University of Kharkiv53, Higher University of San Andrés54, Novosibirsk State University55, Leidos56, Lebanese American University57, University of Split58, University of Pennsylvania59, Banaras Hindu University60, Centre for Cellular and Molecular Biology61, Estonian Academy of Sciences62, Pompeu Fabra University63, Howard Hughes Medical Institute64
01 Sep 2014
TL;DR: The authors showed that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunters-gatherer related ancestry.
Abstract: We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations' deep relationships and show that early European farmers had ∼44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages.

442 citations

Journal ArticleDOI
TL;DR: All uterine tissues progress through a staged transformation near the end of pregnancy that leads from relative uterine quiescence and maintenance of pregnancy to the activation of the uterus that prepares it for the work of labour and production of stimulatory molecules that trigger the onset of labour

442 citations


Authors

Showing all 27579 results

NameH-indexPapersCitations
Martin White1962038232387
Nicholas G. Martin1921770161952
David W. Johnson1602714140778
Nicholas J. Talley158157190197
Mark E. Cooper1581463124887
Xiang Zhang1541733117576
John E. Morley154137797021
Howard I. Scher151944101737
Christopher M. Dobson1501008105475
A. Artamonov1501858119791
Timothy P. Hughes14583191357
Christopher Hill1441562128098
Shi-Zhang Qiao14252380888
Paul Jackson141137293464
H. A. Neal1411903115480
Network Information
Related Institutions (5)
University of Melbourne
174.8K papers, 6.3M citations

97% related

University of British Columbia
209.6K papers, 9.2M citations

92% related

McGill University
162.5K papers, 6.9M citations

92% related

University of Edinburgh
151.6K papers, 6.6M citations

92% related

Imperial College London
209.1K papers, 9.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023127
2022597
20215,500
20205,342
20194,803
20184,443