scispace - formally typeset
Search or ask a question
Institution

University of Adelaide

EducationAdelaide, South Australia, Australia
About: University of Adelaide is a education organization based out in Adelaide, South Australia, Australia. It is known for research contribution in the topics: Population & Poison control. The organization has 27251 authors who have published 79167 publications receiving 2671128 citations. The organization is also known as: The University of Adelaide & Adelaide University.


Papers
More filters
Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1062 moreInstitutions (115)
TL;DR: The magnitude of modifications to the gravitational-wave dispersion relation is constrain, the graviton mass is bound to m_{g}≤7.7×10^{-23} eV/c^{2} and null tests of general relativity are performed, finding that GW170104 is consistent with general relativity.
Abstract: We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10∶11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2^(8.4) _(−6.0)M_⊙ and 19.4^(5.3)_( −5.9)M_⊙ (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, χ_(eff) = −0.12^(0.21)_( −0.30). This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 880^(450)_(−390) Mpc corresponding to a redshift of z = 0.18^(0.08)_( −0.07) . We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to m_g ≤ 7.7 × 10^(−23) eV/c^2. In all cases, we find that GW170104 is consistent with general relativity.

2,569 citations

Book
01 Jan 1997
TL;DR: The Oxford University Press and the Institute of Physics have joined forces to create a major reference publication devoted to EC fundamentals, models, algorithms and applications, intended to become the standard reference resource for the evolutionary computation community.
Abstract: From the Publisher: Many scientists and engineers now use the paradigms of evolutionary computation (genetic agorithms, evolution strategies, evolutionary programming, genetic programming, classifier systems, and combinations or hybrids thereof) to tackle problems that are either intractable or unrealistically time consuming to solve through traditional computational strategies Recently there have been vigorous initiatives to promote cross-fertilization between the EC paradigms, and also to combine these paradigms with other approaches such as neural networks to create hybrid systems with enhanced capabilities To address the need for speedy dissemination of new ideas in these fields, and also to assist in cross-disciplinary communications and understanding, Oxford University Press and the Institute of Physics have joined forces to create a major reference publication devoted to EC fundamentals, models, algorithms and applications This work is intended to become the standard reference resource for the evolutionary computation community The Handbook of Evolutionary Computation will be available in loose-leaf print form, as well as in an electronic version that combines both CD-ROM and on-line (World Wide Web) acess to its contents Regularly published supplements will be available on a subscription basis

2,461 citations

Journal ArticleDOI
Peter Bailey1, David K. Chang2, Katia Nones3, Katia Nones1, Amber L. Johns4, Ann-Marie Patch1, Ann-Marie Patch3, Marie-Claude Gingras5, David Miller4, David Miller1, Angelika N. Christ1, Timothy J. C. Bruxner1, Michael C.J. Quinn1, Michael C.J. Quinn3, Craig Nourse1, Craig Nourse2, Murtaugh Lc6, Ivon Harliwong1, Senel Idrisoglu1, Suzanne Manning1, Ehsan Nourbakhsh1, Shivangi Wani3, Shivangi Wani1, J. Lynn Fink1, Oliver Holmes3, Oliver Holmes1, Chin4, Matthew J. Anderson1, Stephen H. Kazakoff3, Stephen H. Kazakoff1, Conrad Leonard1, Conrad Leonard3, Felicity Newell1, Nicola Waddell1, Scott Wood3, Scott Wood1, Qinying Xu1, Qinying Xu3, Peter J. Wilson1, Nicole Cloonan3, Nicole Cloonan1, Karin S. Kassahn7, Karin S. Kassahn8, Karin S. Kassahn1, Darrin Taylor1, Kelly Quek1, Alan J. Robertson1, Lorena Pantano9, Laura Mincarelli2, Luis Navarro Sanchez2, Lisa Evers2, Jianmin Wu4, Mark Pinese4, Mark J. Cowley4, Jones2, Jones4, Emily K. Colvin4, Adnan Nagrial4, Emily S. Humphrey4, Lorraine A. Chantrill4, Lorraine A. Chantrill10, Amanda Mawson4, Jeremy L. Humphris4, Angela Chou4, Angela Chou11, Marina Pajic4, Marina Pajic12, Christopher J. Scarlett13, Christopher J. Scarlett4, Andreia V. Pinho4, Marc Giry-Laterriere4, Ilse Rooman4, Jaswinder S. Samra14, James G. Kench4, James G. Kench15, James G. Kench16, Jessica A. Lovell4, Neil D. Merrett12, Christopher W. Toon4, Krishna Epari17, Nam Q. Nguyen18, Andrew Barbour19, Nikolajs Zeps20, Kim Moran-Jones2, Nigel B. Jamieson2, Janet Graham21, Janet Graham2, Fraser Duthie22, Karin A. Oien4, Karin A. Oien22, Hair J22, Robert Grützmann23, Anirban Maitra24, Christine A. Iacobuzio-Donahue25, Christopher L. Wolfgang26, Richard A. Morgan26, Rita T. Lawlor, Corbo, Claudio Bassi, Borislav Rusev, Paola Capelli27, Roberto Salvia, Giampaolo Tortora, Debabrata Mukhopadhyay28, Gloria M. Petersen28, Munzy Dm5, William E. Fisher5, Saadia A. Karim, Eshleman26, Ralph H. Hruban26, Christian Pilarsky23, Jennifer P. Morton, Owen J. Sansom2, Aldo Scarpa27, Elizabeth A. Musgrove2, Ulla-Maja Bailey2, Oliver Hofmann2, Oliver Hofmann9, R. L. Sutherland4, David A. Wheeler5, Anthony J. Gill4, Anthony J. Gill15, Richard A. Gibbs5, John V. Pearson3, John V. Pearson1, Andrew V. Biankin, Sean M. Grimmond2, Sean M. Grimmond1, Sean M. Grimmond29 
03 Mar 2016-Nature
TL;DR: Detailed genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing.
Abstract: Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.

2,443 citations

Journal ArticleDOI
TL;DR: In this article, the global burden of hip and knee OA was estimated as part of the Global Burden of Disease 2010 study and the burden of OA compared with other conditions.
Abstract: Objective To estimate the global burden of hip and knee osteoarthritis (OA) as part of the Global Burden of Disease 2010 study and to explore how the burden of hip and knee OA compares with other conditions. Methods Systematic reviews were conducted to source age-specific and sex-specific epidemiological data for hip and knee OA prevalence, incidence and mortality risk. The prevalence and incidence of symptomatic, radiographic and self-reported hip or knee OA were included. Three levels of severity were defined to derive disability weights (DWs) and severity distribution (proportion with mild, moderate and severe OA). The prevalence by country and region was multiplied by the severity distribution and the appropriate disability weight to calculate years of life lived with disability (YLDs). As there are no deaths directly attributed to OA, YLDs equate disability-adjusted life years (DALYs). Results Globally, of the 291 conditions, hip and knee OA was ranked as the 11th highest contributor to global disability and 38th highest in DALYs. The global age-standardised prevalence of knee OA was 3.8% (95% uncertainty interval (UI) 3.6% to 4.1%) and hip OA was 0.85% (95% UI 0.74% to 1.02%), with no discernible change from 1990 to 2010. Prevalence was higher in females than males. YLDs for hip and knee OA increased from 10.5 million in 1990 (0.42% of total DALYs) to 17.1 million in 2010 (0.69% of total DALYs). Conclusions Hip and knee OA is one of the leading causes of global disability. Methodological issues within this study make it highly likely that the real burden of OA has been underestimated. With the aging and increasing obesity of the world9s population, health professions need to prepare for a large increase in the demand for health services to treat hip and knee OA.

2,440 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: RefineNet is presented, a generic multi-path refinement network that explicitly exploits all the information available along the down-sampling process to enable high-resolution prediction using long-range residual connections and introduces chained residual pooling, which captures rich background context in an efficient manner.
Abstract: Recently, very deep convolutional neural networks (CNNs) have shown outstanding performance in object recognition and have also been the first choice for dense classification problems such as semantic segmentation. However, repeated subsampling operations like pooling or convolution striding in deep CNNs lead to a significant decrease in the initial image resolution. Here, we present RefineNet, a generic multi-path refinement network that explicitly exploits all the information available along the down-sampling process to enable high-resolution prediction using long-range residual connections. In this way, the deeper layers that capture high-level semantic features can be directly refined using fine-grained features from earlier convolutions. The individual components of RefineNet employ residual connections following the identity mapping mindset, which allows for effective end-to-end training. Further, we introduce chained residual pooling, which captures rich background context in an efficient manner. We carry out comprehensive experiments and set new state-of-the-art results on seven public datasets. In particular, we achieve an intersection-over-union score of 83.4 on the challenging PASCAL VOC 2012 dataset, which is the best reported result to date.

2,260 citations


Authors

Showing all 27579 results

NameH-indexPapersCitations
Martin White1962038232387
Nicholas G. Martin1921770161952
David W. Johnson1602714140778
Nicholas J. Talley158157190197
Mark E. Cooper1581463124887
Xiang Zhang1541733117576
John E. Morley154137797021
Howard I. Scher151944101737
Christopher M. Dobson1501008105475
A. Artamonov1501858119791
Timothy P. Hughes14583191357
Christopher Hill1441562128098
Shi-Zhang Qiao14252380888
Paul Jackson141137293464
H. A. Neal1411903115480
Network Information
Related Institutions (5)
University of Melbourne
174.8K papers, 6.3M citations

97% related

University of British Columbia
209.6K papers, 9.2M citations

92% related

McGill University
162.5K papers, 6.9M citations

92% related

University of Edinburgh
151.6K papers, 6.6M citations

92% related

Imperial College London
209.1K papers, 9.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023127
2022597
20215,500
20205,342
20194,803
20184,443