scispace - formally typeset
Search or ask a question
Institution

University of Agriculture, Faisalabad

EducationFaisalabad, Pakistan
About: University of Agriculture, Faisalabad is a education organization based out in Faisalabad, Pakistan. It is known for research contribution in the topics: Population & Soil water. The organization has 17601 authors who have published 22256 publications receiving 400025 citations. The organization is also known as: Punjab Agricultural College and Research Institute & UAF.


Papers
More filters
Journal ArticleDOI
TL;DR: In this review article, numerous examples of successful application of these compounds to improve plant stress tolerance are presented and a better understanding of the mechanisms of action of exogenously applied GB and proline is expected to aid their effective utilization in crop production in stress environments.

3,847 citations

Journal ArticleDOI
TL;DR: The effects of drought stress on the growth, phenology, water and nutrient relations, photosynthesis, assimilate partitioning, and respiration in plants, and the mechanism of drought resistance in plants on a morphological, physiological and molecular basis are reviewed.
Abstract: Scarcity of water is a severe environmental constraint to plant productivity. Drought-induced loss in crop yield probably exceeds losses from all other causes, since both the severity and duration of the stress are critical. Here, we have reviewed the effects of drought stress on the growth, phenology, water and nutrient relations, photosynthesis, assimilate partitioning, and respiration in plants. This article also describes the mechanism of drought resistance in plants on a morphological, physiological and molecular basis. Various management strategies have been proposed to cope with drought stress. Drought stress reduces leaf size, stem extension and root proliferation, disturbs plant water relations and reduces water-use efficiency. Plants display a variety of physiological and biochemical responses at cellular and whole-organism levels towards prevailing drought stress, thus making it a complex phenomenon. CO2 assimilation by leaves is reduced mainly by stomatal closure, membrane damage and disturbed activity of various enzymes, especially those of CO2 fixation and adenosine triphosphate synthesis. Enhanced metabolite flux through the photorespiratory pathway increases the oxidative load on the tissues as both processes generate reactive oxygen species. Injury caused by reactive oxygen species to biological macromolecules under drought stress is among the major deterrents to growth. Plants display a range of mechanisms to withstand drought stress. The major mechanisms include curtailed water loss by increased diffusive resistance, enhanced water uptake with prolific and deep root systems and its efficient use, and smaller and succulent leaves to reduce the transpirational loss. Among the nutrients, potassium ions help in osmotic adjustment; silicon increases root endodermal silicification and improves the cell water balance. Low-molecular-weight osmolytes, including glycinebetaine, proline and other amino acids, organic acids, and polyols, are crucial to sustain cellular functions under drought. Plant growth substances such as salicylic acid, auxins, gibberrellins, cytokinin and abscisic acid modulate the plant responses towards drought. Polyamines, citrulline and several enzymes act as antioxidants and reduce the adverse effects of water deficit. At molecular levels several drought-responsive genes and transcription factors have been identified, such as the dehydration-responsive element-binding gene, aquaporin, late embryogenesis abundant proteins and dehydrins. Plant drought tolerance can be managed by adopting strategies such as mass screening and breeding, marker-assisted selection and exogenous application of hormones and osmoprotectants to seed or growing plants, as well as engineering for drought resistance.

3,488 citations

Journal ArticleDOI
TL;DR: C crop heat tolerance can be enhanced by preconditioning of plants under different environmental stresses or exogenous application of osmoprotectants such as glycinebetaine and proline, and by traditional and contemporary molecular breeding protocols and transgenic approaches.

3,037 citations

Journal Article
TL;DR: The cytotoxic action of both these diabetogenic agents is mediated by reactive oxygen species, however, the source of their generation is different in the case of alloxan and streptozotocin.
Abstract: Alloxan and streptozotocin are widely used to induce experimental diabetes in animals. The mechanism of their action in B cells of the pancreas has been intensively investigated and now is quite well understood. The cytotoxic action of both these diabetogenic agents is mediated by reactive oxygen species, however, the source of their generation is different in the case of alloxan and streptozotocin. Alloxan and the product of its reduction, dialuric acid, establish a redox cycle with the formation of superoxide radicals. These radicals undergo dismutation to hydrogen peroxide. Thereafter highly reactive hydroxyl radicals are formed by the Fenton reaction. The action of reactive oxygen species with a simultaneous massive increase in cytosolic calcium concentration causes rapid destruction of B cells. Streptozotocin enters the B cell via a glucose transporter (GLUT2) and causes alkylation of DNA. DNA damage induces activation of poly ADP-ribosylation, a process that is more important for the diabetogenicity of streptozotocin than DNA damage itself. Poly ADP-ribosylation leads to depletion of cellular NAD+ and ATP. Enhanced ATP dephosphorylation after streptozotocin treatment supplies a substrate for xanthine oxidase resulting in the formation of superoxide radicals. Consequently, hydrogen peroxide and hydroxyl radicals are also generated. Furthermore, streptozotocin liberates toxic amounts of nitric oxide that inhibits aconitase activity and participates in DNA damage. As a result of the streptozotocin action, B cells undergo the destruction by necrosis.

2,884 citations

Journal ArticleDOI
TL;DR: It is concluded that although there are a number of promising selection criteria, the complex physiology of salt tolerance and the variation between species make it difficult to identify single criteria.

1,946 citations


Authors

Showing all 17784 results

NameH-indexPapersCitations
Muhammad Ahmad128118779758
Xin Li114277871389
Petr Pyšek11052354926
Yan Zhang107241057758
Muhammad Ashraf100154157240
Kevin D. Hyde99138246113
Muhammad Shoaib97133347617
Andreas Stohl9542535060
Muhammad Imran94305351728
Dietrich Knorr9240327402
Muhammad Shahbaz92100134170
Muhammad Farooq92134137533
Jianhua Zhang9241528085
Thomas M.S. Wolever9138831323
Hermann Katinger7838927589
Network Information
Related Institutions (5)
China Agricultural University
35.1K papers, 727.5K citations

92% related

Nanjing Agricultural University
27.3K papers, 546.5K citations

91% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

88% related

University of Hohenheim
16.4K papers, 567.3K citations

88% related

Universiti Putra Malaysia
36.7K papers, 647.6K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202323
2022312
20213,143
20202,629
20191,898
20181,762