scispace - formally typeset

University of Alabama at Birmingham

EducationBirmingham, Alabama, United States
About: University of Alabama at Birmingham is a(n) education organization based out in Birmingham, Alabama, United States. It is known for research contribution in the topic(s): Population & Poison control. The organization has 38523 authors who have published 86775 publication(s) receiving 3930642 citation(s). The organization is also known as: UAB & The University of Alabama at Birmingham.

More filters
Journal ArticleDOI
21 May 2003-JAMA
TL;DR: The most effective therapy prescribed by the most careful clinician will control hypertension only if patients are motivated, and empathy builds trust and is a potent motivator.
Abstract: "The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure" provides a new guideline for hypertension prevention and management. The following are the key messages(1) In persons older than 50 years, systolic blood pressure (BP) of more than 140 mm Hg is a much more important cardiovascular disease (CVD) risk factor than diastolic BP; (2) The risk of CVD, beginning at 115/75 mm Hg, doubles with each increment of 20/10 mm Hg; individuals who are normotensive at 55 years of age have a 90% lifetime risk for developing hypertension; (3) Individuals with a systolic BP of 120 to 139 mm Hg or a diastolic BP of 80 to 89 mm Hg should be considered as prehypertensive and require health-promoting lifestyle modifications to prevent CVD; (4) Thiazide-type diuretics should be used in drug treatment for most patients with uncomplicated hypertension, either alone or combined with drugs from other classes. Certain high-risk conditions are compelling indications for the initial use of other antihypertensive drug classes (angiotensin-converting enzyme inhibitors, angiotensin-receptor blockers, β-blockers, calcium channel blockers); (5) Most patients with hypertension will require 2 or more antihypertensive medications to achieve goal BP (<140/90 mm Hg, or <130/80 mm Hg for patients with diabetes or chronic kidney disease); (6) If BP is more than 20/10 mm Hg above goal BP, consideration should be given to initiating therapy with 2 agents, 1 of which usually should be a thiazide-type diuretic; and (7) The most effective therapy prescribed by the most careful clinician will control hypertension only if patients are motivated. Motivation improves when patients have positive experiences with and trust in the clinician. Empathy builds trust and is a potent motivator. Finally, in presenting these guidelines, the committee recognizes that the responsible physician's judgment remains paramount.

24,313 citations

Journal ArticleDOI
Rafael Lozano1, Mohsen Naghavi1, Kyle J Foreman2, Stephen S Lim1  +192 moreInstitutions (95)
TL;DR: The Global Burden of Diseases, Injuries, and Risk Factors Study 2010 aimed to estimate annual deaths for the world and 21 regions between 1980 and 2010 for 235 causes, with uncertainty intervals (UIs), separately by age and sex, using the Cause of Death Ensemble model.
Abstract: Summary Background Reliable and timely information on the leading causes of death in populations, and how these are changing, is a crucial input into health policy debates. In the Global Burden of Diseases, Injuries, and Risk Factors Study 2010 (GBD 2010), we aimed to estimate annual deaths for the world and 21 regions between 1980 and 2010 for 235 causes, with uncertainty intervals (UIs), separately by age and sex. Methods We attempted to identify all available data on causes of death for 187 countries from 1980 to 2010 from vital registration, verbal autopsy, mortality surveillance, censuses, surveys, hospitals, police records, and mortuaries. We assessed data quality for completeness, diagnostic accuracy, missing data, stochastic variations, and probable causes of death. We applied six different modelling strategies to estimate cause-specific mortality trends depending on the strength of the data. For 133 causes and three special aggregates we used the Cause of Death Ensemble model (CODEm) approach, which uses four families of statistical models testing a large set of different models using different permutations of covariates. Model ensembles were developed from these component models. We assessed model performance with rigorous out-of-sample testing of prediction error and the validity of 95% UIs. For 13 causes with low observed numbers of deaths, we developed negative binomial models with plausible covariates. For 27 causes for which death is rare, we modelled the higher level cause in the cause hierarchy of the GBD 2010 and then allocated deaths across component causes proportionately, estimated from all available data in the database. For selected causes (African trypanosomiasis, congenital syphilis, whooping cough, measles, typhoid and parathyroid, leishmaniasis, acute hepatitis E, and HIV/AIDS), we used natural history models based on information on incidence, prevalence, and case-fatality. We separately estimated cause fractions by aetiology for diarrhoea, lower respiratory infections, and meningitis, as well as disaggregations by subcause for chronic kidney disease, maternal disorders, cirrhosis, and liver cancer. For deaths due to collective violence and natural disasters, we used mortality shock regressions. For every cause, we estimated 95% UIs that captured both parameter estimation uncertainty and uncertainty due to model specification where CODEm was used. We constrained cause-specific fractions within every age-sex group to sum to total mortality based on draws from the uncertainty distributions. Findings In 2010, there were 52·8 million deaths globally. At the most aggregate level, communicable, maternal, neonatal, and nutritional causes were 24·9% of deaths worldwide in 2010, down from 15·9 million (34·1%) of 46·5 million in 1990. This decrease was largely due to decreases in mortality from diarrhoeal disease (from 2·5 to 1·4 million), lower respiratory infections (from 3·4 to 2·8 million), neonatal disorders (from 3·1 to 2·2 million), measles (from 0·63 to 0·13 million), and tetanus (from 0·27 to 0·06 million). Deaths from HIV/AIDS increased from 0·30 million in 1990 to 1·5 million in 2010, reaching a peak of 1·7 million in 2006. Malaria mortality also rose by an estimated 19·9% since 1990 to 1·17 million deaths in 2010. Tuberculosis killed 1·2 million people in 2010. Deaths from non-communicable diseases rose by just under 8 million between 1990 and 2010, accounting for two of every three deaths (34·5 million) worldwide by 2010. 8 million people died from cancer in 2010, 38% more than two decades ago; of these, 1·5 million (19%) were from trachea, bronchus, and lung cancer. Ischaemic heart disease and stroke collectively killed 12·9 million people in 2010, or one in four deaths worldwide, compared with one in five in 1990; 1·3 million deaths were due to diabetes, twice as many as in 1990. The fraction of global deaths due to injuries (5·1 million deaths) was marginally higher in 2010 (9·6%) compared with two decades earlier (8·8%). This was driven by a 46% rise in deaths worldwide due to road traffic accidents (1·3 million in 2010) and a rise in deaths from falls. Ischaemic heart disease, stroke, chronic obstructive pulmonary disease (COPD), lower respiratory infections, lung cancer, and HIV/AIDS were the leading causes of death in 2010. Ischaemic heart disease, lower respiratory infections, stroke, diarrhoeal disease, malaria, and HIV/AIDS were the leading causes of years of life lost due to premature mortality (YLLs) in 2010, similar to what was estimated for 1990, except for HIV/AIDS and preterm birth complications. YLLs from lower respiratory infections and diarrhoea decreased by 45–54% since 1990; ischaemic heart disease and stroke YLLs increased by 17–28%. Regional variations in leading causes of death were substantial. Communicable, maternal, neonatal, and nutritional causes still accounted for 76% of premature mortality in sub-Saharan Africa in 2010. Age standardised death rates from some key disorders rose (HIV/AIDS, Alzheimer's disease, diabetes mellitus, and chronic kidney disease in particular), but for most diseases, death rates fell in the past two decades; including major vascular diseases, COPD, most forms of cancer, liver cirrhosis, and maternal disorders. For other conditions, notably malaria, prostate cancer, and injuries, little change was noted. Interpretation Population growth, increased average age of the world's population, and largely decreasing age-specific, sex-specific, and cause-specific death rates combine to drive a broad shift from communicable, maternal, neonatal, and nutritional causes towards non-communicable diseases. Nevertheless, communicable, maternal, neonatal, and nutritional causes remain the dominant causes of YLLs in sub-Saharan Africa. Overlaid on this general pattern of the epidemiological transition, marked regional variation exists in many causes, such as interpersonal violence, suicide, liver cancer, diabetes, cirrhosis, Chagas disease, African trypanosomiasis, melanoma, and others. Regional heterogeneity highlights the importance of sound epidemiological assessments of the causes of death on a regular basis. Funding Bill & Melinda Gates Foundation.

10,602 citations

Journal ArticleDOI
Marie Ng1, Tom P Fleming1, Margaret Robinson1, Blake Thomson1, Nicholas Graetz1, Christopher Margono1, Erin C Mullany1, Stan Biryukov1, Cristiana Abbafati2, Semaw Ferede Abera3, Jerry Abraham4, Niveen M E Abu-Rmeileh, Tom Achoki1, Fadia AlBuhairan5, Zewdie Aderaw Alemu6, Rafael Alfonso1, Mohammed K. Ali7, Raghib Ali8, Nelson Alvis Guzmán9, Walid Ammar, Palwasha Anwari10, Amitava Banerjee11, Simón Barquera, Sanjay Basu12, Derrick A Bennett8, Zulfiqar A Bhutta13, Jed D. Blore14, N Cabral, Ismael Ricardo Campos Nonato, Jung-Chen Chang15, Rajiv Chowdhury16, Karen J. Courville, Michael H. Criqui17, David K. Cundiff, Kaustubh Dabhadkar7, Lalit Dandona18, Lalit Dandona1, Adrian Davis19, Anand Dayama7, Samath D Dharmaratne20, Eric L. Ding21, Adnan M. Durrani22, Alireza Esteghamati23, Farshad Farzadfar23, Derek F J Fay19, Valery L. Feigin24, Abraham D. Flaxman1, Mohammad H. Forouzanfar1, Atsushi Goto, Mark A. Green25, Rajeev Gupta, Nima Hafezi-Nejad23, Graeme J. Hankey26, Heather Harewood, Rasmus Havmoeller27, Simon I. Hay8, Lucia Hernandez, Abdullatif Husseini28, Bulat Idrisov29, Nayu Ikeda, Farhad Islami30, Eiman Jahangir31, Simerjot K. Jassal17, Sun Ha Jee32, Mona Jeffreys33, Jost B. Jonas34, Edmond K. Kabagambe35, Shams Eldin Ali Hassan Khalifa, Andre Pascal Kengne36, Yousef Khader37, Young-Ho Khang38, Daniel Kim39, Ruth W Kimokoti40, Jonas Minet Kinge41, Yoshihiro Kokubo, Soewarta Kosen, Gene F. Kwan42, Taavi Lai, Mall Leinsalu22, Yichong Li, Xiaofeng Liang43, Shiwei Liu43, Giancarlo Logroscino44, Paulo A. Lotufo45, Yuan Qiang Lu21, Jixiang Ma43, Nana Kwaku Mainoo, George A. Mensah22, Tony R. Merriman46, Ali H. Mokdad1, Joanna Moschandreas47, Mohsen Naghavi1, Aliya Naheed48, Devina Nand, K.M. Venkat Narayan7, Erica Leigh Nelson1, Marian L. Neuhouser49, Muhammad Imran Nisar13, Takayoshi Ohkubo50, Samuel Oti, Andrea Pedroza, Dorairaj Prabhakaran, Nobhojit Roy51, Uchechukwu K.A. Sampson35, Hyeyoung Seo, Sadaf G. Sepanlou23, Kenji Shibuya52, Rahman Shiri53, Ivy Shiue54, Gitanjali M Singh21, Jasvinder A. Singh55, Vegard Skirbekk41, Nicolas J. C. Stapelberg56, Lela Sturua57, Bryan L. Sykes58, Martin Tobias1, Bach Xuan Tran59, Leonardo Trasande60, Hideaki Toyoshima, Steven van de Vijver, Tommi Vasankari, J. Lennert Veerman61, Gustavo Velasquez-Melendez62, Vasiliy Victorovich Vlassov63, Stein Emil Vollset41, Stein Emil Vollset64, Theo Vos1, Claire L. Wang65, Xiao Rong Wang66, Elisabete Weiderpass, Andrea Werdecker, Jonathan L. Wright1, Y Claire Yang67, Hiroshi Yatsuya68, Jihyun Yoon, Seok Jun Yoon69, Yong Zhao70, Maigeng Zhou, Shankuan Zhu71, Alan D. Lopez14, Christopher J L Murray1, Emmanuela Gakidou1 
University of Washington1, Sapienza University of Rome2, Mekelle University3, University of Texas at San Antonio4, King Saud bin Abdulaziz University for Health Sciences5, Debre markos University6, Emory University7, University of Oxford8, University of Cartagena9, United Nations Population Fund10, University of Birmingham11, Stanford University12, Aga Khan University13, University of Melbourne14, National Taiwan University15, University of Cambridge16, University of California, San Diego17, Public Health Foundation of India18, Public Health England19, University of Peradeniya20, Harvard University21, National Institutes of Health22, Tehran University of Medical Sciences23, Auckland University of Technology24, University of Sheffield25, University of Western Australia26, Karolinska Institutet27, Birzeit University28, Brandeis University29, American Cancer Society30, Ochsner Medical Center31, Yonsei University32, University of Bristol33, Heidelberg University34, Vanderbilt University35, South African Medical Research Council36, Jordan University of Science and Technology37, New Generation University College38, Northeastern University39, Simmons College40, Norwegian Institute of Public Health41, Boston University42, Chinese Center for Disease Control and Prevention43, University of Bari44, University of São Paulo45, University of Otago46, University of Crete47, International Centre for Diarrhoeal Disease Research, Bangladesh48, Fred Hutchinson Cancer Research Center49, Teikyo University50, Bhabha Atomic Research Centre51, University of Tokyo52, Finnish Institute of Occupational Health53, Heriot-Watt University54, University of Alabama at Birmingham55, Griffith University56, National Center for Disease Control and Public Health57, University of California, Irvine58, Johns Hopkins University59, New York University60, University of Queensland61, Universidade Federal de Minas Gerais62, National Research University – Higher School of Economics63, University of Bergen64, Columbia University65, Shandong University66, University of North Carolina at Chapel Hill67, Fujita Health University68, Korea University69, Chongqing Medical University70, Zhejiang University71
TL;DR: The global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013 is estimated using a spatiotemporal Gaussian process regression model to estimate prevalence with 95% uncertainty intervals (UIs).
Abstract: Summary Background In 2010, overweight and obesity were estimated to cause 3·4 million deaths, 3·9% of years of life lost, and 3·8% of disability-adjusted life-years (DALYs) worldwide. The rise in obesity has led to widespread calls for regular monitoring of changes in overweight and obesity prevalence in all populations. Comparable, up-to-date information about levels and trends is essential to quantify population health effects and to prompt decision makers to prioritise action. We estimate the global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013. Methods We systematically identified surveys, reports, and published studies (n=1769) that included data for height and weight, both through physical measurements and self-reports. We used mixed effects linear regression to correct for bias in self-reports. We obtained data for prevalence of obesity and overweight by age, sex, country, and year (n=19 244) with a spatiotemporal Gaussian process regression model to estimate prevalence with 95% uncertainty intervals (UIs). Findings Worldwide, the proportion of adults with a body-mass index (BMI) of 25 kg/m 2 or greater increased between 1980 and 2013 from 28·8% (95% UI 28·4–29·3) to 36·9% (36·3–37·4) in men, and from 29·8% (29·3–30·2) to 38·0% (37·5–38·5) in women. Prevalence has increased substantially in children and adolescents in developed countries; 23·8% (22·9–24·7) of boys and 22·6% (21·7–23·6) of girls were overweight or obese in 2013. The prevalence of overweight and obesity has also increased in children and adolescents in developing countries, from 8·1% (7·7–8·6) to 12·9% (12·3–13·5) in 2013 for boys and from 8·4% (8·1–8·8) to 13·4% (13·0–13·9) in girls. In adults, estimated prevalence of obesity exceeded 50% in men in Tonga and in women in Kuwait, Kiribati, Federated States of Micronesia, Libya, Qatar, Tonga, and Samoa. Since 2006, the increase in adult obesity in developed countries has slowed down. Interpretation Because of the established health risks and substantial increases in prevalence, obesity has become a major global health challenge. Not only is obesity increasing, but no national success stories have been reported in the past 33 years. Urgent global action and leadership is needed to help countries to more effectively intervene. Funding Bill & Melinda Gates Foundation.

7,968 citations

Journal ArticleDOI
TL;DR: It is proposed that superoxide dismutase may protect vascular tissue stimulated to produce superoxide and NO under pathological conditions by preventing the formation of peroxynitrite.
Abstract: Superoxide dismutase reduces injury in many disease processes, implicating superoxide anion radical (O2-.) as a toxic species in vivo. A critical target of superoxide may be nitric oxide (NO.) produced by endothelium, macrophages, neutrophils, and brain synaptosomes. Superoxide and NO. are known to rapidly react to form the stable peroxynitrite anion (ONOO-). We have shown that peroxynitrite has a pKa of 7.49 +/- 0.06 at 37 degrees C and rapidly decomposes once protonated with a half-life of 1.9 sec at pH 7.4. Peroxynitrite decomposition generates a strong oxidant with reactivity similar to hydroxyl radical, as assessed by the oxidation of deoxyribose or dimethyl sulfoxide. Product yields indicative of hydroxyl radical were 5.1 +/- 0.1% and 24.3 +/- 1.0%, respectively, of added peroxynitrite. Product formation was not affected by the metal chelator diethyltriaminepentaacetic acid, suggesting that iron was not required to catalyze oxidation. In contrast, desferrioxamine was a potent, competitive inhibitor of peroxynitrite-initiated oxidation because of a direct reaction between desferrioxamine and peroxynitrite rather than by iron chelation. We propose that superoxide dismutase may protect vascular tissue stimulated to produce superoxide and NO. under pathological conditions by preventing the formation of peroxynitrite.

6,897 citations

Journal ArticleDOI
Curtis Huttenhower1, Curtis Huttenhower2, Dirk Gevers2, Rob Knight3  +250 moreInstitutions (42)
14 Jun 2012-Nature
TL;DR: The Human Microbiome Project Consortium reported the first results of their analysis of microbial communities from distinct, clinically relevant body habitats in a human cohort; the insights into the microbial communities of a healthy population lay foundations for future exploration of the epidemiology, ecology and translational applications of the human microbiome as discussed by the authors.
Abstract: The Human Microbiome Project Consortium reports the first results of their analysis of microbial communities from distinct, clinically relevant body habitats in a human cohort; the insights into the microbial communities of a healthy population lay foundations for future exploration of the epidemiology, ecology and translational applications of the human microbiome.

6,805 citations


Showing all 38523 results

Rudolf Jaenisch206606178436
Joel Schwartz1831149109985
Tadamitsu Kishimoto1811067130860
Jasvinder A. Singh1762382223370
Gregg L. Semenza168502130316
David R. Jacobs1651262113892
Hua Zhang1631503116769
David R. Holmes1611624114187
David Cella1561258106402
Elaine S. Jaffe156828112412
Michael A. Matthay15199898687
Lawrence Corey14677378105
Barton F. Haynes14491179014
Douglas D. Richman14263382806
Kjell Fuxe142147989846
Network Information
Related Institutions (5)
University of Pittsburgh
201K papers, 9.6M citations

98% related

University of California, San Francisco
186.2K papers, 12M citations

98% related

National Institutes of Health
297.8K papers, 21.3M citations

97% related

Brigham and Women's Hospital
110.5K papers, 6.8M citations

97% related

University of North Carolina at Chapel Hill
185.3K papers, 9.9M citations

97% related

No. of papers from the Institution in previous years