scispace - formally typeset
Search or ask a question
Institution

University of Alabama at Birmingham

EducationBirmingham, Alabama, United States
About: University of Alabama at Birmingham is a education organization based out in Birmingham, Alabama, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 38523 authors who have published 86775 publications receiving 3930642 citations. The organization is also known as: UAB & The University of Alabama at Birmingham.


Papers
More filters
Journal ArticleDOI
TL;DR: It is recommended that all HIV-infected individuals continue maintenance therapy for life with fluconazole, and HIV-negative, immunocompromised hosts should be treated in the same fashion as those with CNS disease, regardless of the site of involvement.
Abstract: An 8-person subcommittee of the National Institute of Allergy and Infectious Diseases (NIAID) Mycoses Study Group evaluated available data on the treatment of cryptococcal disease. Opinion regarding optimal treatment was based on personal experience and information in the literature. The relative strength of each recommendation was graded according to the type and degree of evidence available to support the recommendation, in keeping with previously published guidelines by the Infectious Diseases Society of America (IDSA). The panel conferred in person (on 2 occasions), by conference call, and through written reviews of each draft of the manuscript. The choice of treatment for disease caused by Cryptococcus neoformans depends on both the anatomic sites of involvement and the host's immune status. For immunocompetent hosts with isolated pulmonary disease, careful observation may be warranted; in the case of symptomatic infection, indicated treatment is fluconazole, 200-400 mg/day for 36 months. For those individuals with non-CNS-isolated cryptococcemia, a positive serum cryptococcal antigen titer >1:8, or urinary tract or cutaneous disease, recommended treatment is oral azole therapy (fluconazole) for 36 months. In each case, careful assessment of the CNS is required to rule out occult meningitis. For those individuals who are unable to tolerate fluconazole, itraconazole (200-400 mg/day for 6-12 months) is an acceptable alternative. For patients with more severe disease, treatment with amphotericin B (0.5-1 mg/kg/d) may be necessary for 6-10 weeks. For otherwise healthy hosts with CNS disease, standard therapy consists of amphotericin B, 0.7-1 mg/kg/d, plus flucytosine, 100 mg/kg/d, for 6-10 weeks. An alternative to this regimen is amphotericin B (0.7-1 mg/kg/d) plus 5-flucytosine (100 mg/kg/d) for 2 weeks, followed by fluconazole (400 mg/day) for a minimum of 10 weeks. Fluconazole "consolidation" therapy may be continued for as along as 6-12 months, depending on the clinical status of the patient. HIV-negative, immunocompromised hosts should be treated in the same fashion as those with CNS disease, regardless of the site of involvement. Cryptococcal disease that develops in patients with HIV infection always warrants therapy. For those patients with HIV who present with isolated pulmonary or urinary tract disease, fluconazole at 200-400 mg/d is indicated. Although the ultimate impact from highly active antiretroviral therapy (HAART) is currently unclear, it is recommended that all HIV-infected individuals continue maintenance therapy for life. Among those individuals who are unable to tolerate fluconazole, itraconazole (200-400 mg/d) is an acceptable alternative. For patients with more severe disease, a combination of fluconazole (400 mg/d) plus flucytosine (100-150 mg/d) may be used for 10 weeks, followed by fluconazole maintenance therapy. Among patients with HIV infection and cryptococcal meningitis, induction therapy with amphotericin B (0.7-1 mg/kg/d) plus flucytosine (100 mg/kg/d for 2 weeks) followed by fluconazole (400 mg/d) for a minimum of 10 weeks is the treatment of choice. After 10 weeks of therapy, the fluconazole dosage may be reduced to 200 mg/d, depending on the patient's clinical status. Fluconazole should be continued for life. An alternative regimen for AIDS-associated cryptococcal meningitis is amphotericin B (0.7-1 mg/kg/d) plus 5-flucytosine (100 mg/kg/d) for 6-10 weeks, followed by fluconazole maintenance therapy. Induction therapy beginning with an azole alone is generally discouraged. Lipid formulations of amphotericin B can be substituted for amphotericin B for patients whose renal function is impaired. Fluconazole (400-800 mg/d) plus flucytosine (100-150 mg/kg/d) for 6 weeks is an alternative to the use of amphotericin B, although toxicity with this regimen is high. In all cases of cryptococcal meningitis, careful attention to the management of intracranial pressure is imperative to assure optimal c

1,047 citations

Journal ArticleDOI
09 Jun 2000-Science
TL;DR: Using a comprehensive full-length envelope sequence alignment, the date of the last common ancestor of the main group of HIV-1 is estimated to be 1931 (1915-41).
Abstract: HIV-1 sequences were analyzed to estimate the timing of the ancestral sequence of the main group of HIV-1, the strains responsible for the AIDS pandemic. Using parallel supercomputers and assuming a constant rate of evolution, we applied maximum-likelihood phylogenetic methods to unprecedented amounts of data for this calculation. We validated our approach by correctly estimating the timing of two historically documented points. Using a comprehensive full-length envelope sequence alignment, we estimated the date of the last common ancestor of the main group of HIV-1 to be 1931 (1915-41). Analysis of a gag gene alignment, subregions of envelope including additional sequences, and a method that relaxed the assumption of a strict molecular clock also supported these results.

1,044 citations

Journal ArticleDOI
TL;DR: Advances in immunosuppressive treatment for inflammatory disorders have created new questions about the approach to prevention and treatment of histoplasmosis, and new information, based on publications from the period 1999-2006, are incorporated into this guideline document.
Abstract: Evidence-based guidelines for the management of patients with histoplasmosis were prepared by an Expert Panel of the Infectious Diseases Society of America. These updated guidelines replace the previous treatment guidelines published in 2000 (Clin Infect Dis 2000; 30:688-95). The guidelines are intended for use by health care providers who care for patients who either have these infections or may be at risk for them. Since 2000, several new antifungal agents have become available, and clinical trials and case series have increased our understanding of the management of histoplasmosis. Advances in immunosuppressive treatment for inflammatory disorders have created new questions about the approach to prevention and treatment of histoplasmosis. New information, based on publications from the period 1999-2006, are incorporated into this guideline document. In addition, the panel added recommendations for management of histoplasmosis in children for those aspects that differ from aspects in adults.

1,042 citations

Journal ArticleDOI
TL;DR: The origin and the specific features of the myofibroblast in diverse fibrotic lesions, such as systemic sclerosis; kidney, liver, and lung fibrosis; and the stromal reaction to certain epithelial tumors are reviewed.
Abstract: The discovery of the myofibroblast has opened new perspectives for the comprehension of the biological mechanisms involved in wound healing and fibrotic diseases. In recent years, many advances have been made in understanding important aspects of myofibroblast basic biological characteristics. This review summarizes such advances in several fields, such as the following: i) force production by the myofibroblast and mechanisms of connective tissue remodeling; ii) factors controlling the expression of α-smooth muscle actin, the most used marker of myofibroblastic phenotype and, more important, involved in force generation by the myofibroblast; and iii) factors affecting genesis of the myofibroblast and its differentiation from precursor cells, in particular epigenetic factors, such as DNA methylation, microRNAs, and histone modification. We also review the origin and the specific features of the myofibroblast in diverse fibrotic lesions, such as systemic sclerosis; kidney, liver, and lung fibrosis; and the stromal reaction to certain epithelial tumors. Finally, we summarize the emerging strategies for influencing myofibroblast behavior in vitro and in vivo, with the ultimate goal of an effective therapeutic approach for myofibroblast-dependent diseases.

1,041 citations

Journal ArticleDOI
Gary A. Churchill, David C. Airey1, Hooman Allayee2, Joe M. Angel3, Alan D. Attie4, Jackson Beatty5, Willam D. Beavis6, John K. Belknap7, Beth Bennett8, Wade H. Berrettini9, André Bleich10, Molly A. Bogue, Karl W. Broman11, Kari J. Buck12, Edward S. Buckler13, Margit Burmeister14, Elissa J. Chesler15, James M. Cheverud16, Steven J. Clapcote17, Melloni N. Cook18, Roger D. Cox19, John C. Crabbe12, Wim E. Crusio20, Ariel Darvasi21, Christian F. Deschepper22, Rebecca W. Doerge23, Charles R. Farber24, Jiri Forejt25, Daniel Gaile26, Steven J. Garlow27, Hartmut Geiger28, Howard K. Gershenfeld29, Terry Gordon30, Jing Gu15, Weikuan Gu15, Gerald de Haan31, Nancy L. Hayes32, Craig Heller33, Heinz Himmelbauer34, Robert Hitzemann12, Kent W. Hunter35, Hui-Chen Hsu36, Fuad A. Iraqi37, Boris Ivandic38, Howard J. Jacob39, Ritsert C. Jansen31, Karl J. Jepsen40, Dabney K. Johnson41, Thomas E. Johnson8, Gerd Kempermann42, Christina Kendziorski4, Malak Kotb15, R. Frank Kooy43, Bastien Llamas22, Frank Lammert44, J. M. Lassalle45, Pedro R. Lowenstein5, Lu Lu15, Aldons J. Lusis5, Kenneth F. Manly15, Ralph S. Marcucio46, Doug Matthews18, Juan F. Medrano24, Darla R. Miller41, Guy Mittleman18, Beverly A. Mock35, Jeffrey S. Mogil47, Xavier Montagutelli48, Grant Morahan49, David G. Morris50, Richard Mott51, Joseph H. Nadeau52, Hiroki Nagase53, Richard S. Nowakowski32, Bruce F. O'Hara54, Alexander V. Osadchuk, Grier P. Page36, Beverly Paigen, Kenneth Paigen, Abraham A. Palmer, Huei Ju Pan, Leena Peltonen-Palotie55, Leena Peltonen-Palotie5, Jeremy L. Peirce15, Daniel Pomp56, Michal Pravenec25, Daniel R. Prows28, Zonghua Qi1, Roger H. Reeves11, John C. Roder17, Glenn D. Rosen57, Eric E. Schadt58, Leonard C. Schalkwyk59, Ze'ev Seltzer17, Kazuhiro Shimomura60, Siming Shou61, Mikko J. Sillanpää55, Linda D. Siracusa62, Hans-Willem Snoeck40, Jimmy L. Spearow24, Karen L. Svenson, Lisa M. Tarantino63, David W. Threadgill64, Linda A. Toth65, William Valdar51, Fernando Pardo-Manuel de Villena64, Craig H Warden24, Steve Whatley59, Robert W. Williams15, Tom Wiltshire63, Nengjun Yi36, Dabao Zhang66, Min Zhang13, Fei Zou64 
Vanderbilt University1, University of Southern California2, University of Texas MD Anderson Cancer Center3, University of Wisconsin-Madison4, University of California, Los Angeles5, National Center for Genome Resources6, Portland VA Medical Center7, University of Colorado Boulder8, University of Pennsylvania9, Hannover Medical School10, Johns Hopkins University11, Oregon Health & Science University12, Cornell University13, University of Michigan14, University of Tennessee Health Science Center15, Washington University in St. Louis16, University of Toronto17, University of Memphis18, Medical Research Council19, University of Massachusetts Medical School20, Hebrew University of Jerusalem21, Université de Montréal22, Purdue University23, University of California, Davis24, Academy of Sciences of the Czech Republic25, University at Buffalo26, Emory University27, University of Cincinnati28, University of Texas Southwestern Medical Center29, New York University30, University of Groningen31, Rutgers University32, Stanford University33, Max Planck Society34, National Institutes of Health35, University of Alabama at Birmingham36, International Livestock Research Institute37, Heidelberg University38, Medical College of Wisconsin39, Icahn School of Medicine at Mount Sinai40, Oak Ridge National Laboratory41, Charité42, University of Antwerp43, RWTH Aachen University44, Paul Sabatier University45, University of California, San Francisco46, McGill University47, Pasteur Institute48, University of Western Australia49, Yale University50, University of Oxford51, Case Western Reserve University52, Roswell Park Cancer Institute53, University of Kentucky54, University of Helsinki55, University of Nebraska–Lincoln56, Harvard University57, Merck & Co.58, King's College London59, Northwestern University60, Shriners Hospitals for Children61, Thomas Jefferson University62, Novartis63, University of North Carolina at Chapel Hill64, Southern Illinois University Carbondale65, University of Rochester66
TL;DR: The Collaborative Cross will provide a common reference panel specifically designed for the integrative analysis of complex systems and will change the way the authors approach human health and disease.
Abstract: The goal of the Complex Trait Consortium is to promote the development of resources that can be used to understand, treat and ultimately prevent pervasive human diseases. Existing and proposed mouse resources that are optimized to study the actions of isolated genetic loci on a fixed background are less effective for studying intact polygenic networks and interactions among genes, environments, pathogens and other factors. The Collaborative Cross will provide a common reference panel specifically designed for the integrative analysis of complex systems and will change the way we approach human health and disease.

1,040 citations


Authors

Showing all 38940 results

NameH-indexPapersCitations
Rudolf Jaenisch206606178436
Joel Schwartz1831149109985
Tadamitsu Kishimoto1811067130860
Jasvinder A. Singh1762382223370
Gregg L. Semenza168502130316
David R. Jacobs1651262113892
Hua Zhang1631503116769
David R. Holmes1611624114187
David Cella1561258106402
Elaine S. Jaffe156828112412
Michael A. Matthay15199898687
Lawrence Corey14677378105
Barton F. Haynes14491179014
Douglas D. Richman14263382806
Kjell Fuxe142147989846
Network Information
Related Institutions (5)
University of Pittsburgh
201K papers, 9.6M citations

98% related

University of California, San Francisco
186.2K papers, 12M citations

98% related

National Institutes of Health
297.8K papers, 21.3M citations

97% related

Brigham and Women's Hospital
110.5K papers, 6.8M citations

97% related

University of North Carolina at Chapel Hill
185.3K papers, 9.9M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023168
2022530
20215,327
20205,028
20194,402
20184,083