scispace - formally typeset
Search or ask a question
Institution

University of Alberta

EducationEdmonton, Alberta, Canada
About: University of Alberta is a education organization based out in Edmonton, Alberta, Canada. It is known for research contribution in the topics: Population & Health care. The organization has 65403 authors who have published 154847 publications receiving 5358338 citations. The organization is also known as: Ualberta & UAlberta.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review of the microstructure and electrochemical performance relations of MoS2-based anodes and cathodes for secondary lithium ion batteries (LIBs) is presented.
Abstract: This is the first targeted review of the synthesis – microstructure – electrochemical performance relations of MoS2 – based anodes and cathodes for secondary lithium ion batteries (LIBs). Molybdenum disulfide is a highly promising material for LIBs that compensates for its intermediate insertion voltage (∼2 V vs. Li/Li+) with a high reversible capacity (up to 1290 mA h g−1) and an excellent rate capability (e.g. 554 mA h g−1 after 20 cycles at 50 C). Several themes emerge when surveying the scientific literature on the subject: first, we argue that there is excellent data to show that truly nanoscale structures, which often contain a nanodispersed carbon phase, consistently possess superior charge storage capacity and cycling performance. We provide several hypotheses regarding why the measured capacities in such architectures are well above the theoretical predictions of the known MoS2 intercalation and conversion reactions. Second, we highlight the growing microstructural and electrochemical evidence that the layered MoS2 structure does not survive past the initial lithiation cycle, and that subsequently the electrochemically active material is actually elemental sulfur. Third, we show that certain synthesis techniques are consistently demonstrated to be the most promising for battery applications, and describe these in detail. Fourth, we present our selection of synthesis methods that we believe to have a high potential for creating improved MoS2 LIB electrodes, but are yet to be tried.

1,133 citations

Book ChapterDOI
14 Apr 2013
TL;DR: This work proposes a theoretically and practically improved density-based, hierarchical clustering method, providing a clustering hierarchy from which a simplified tree of significant clusters can be constructed, and proposes a novel cluster stability measure.
Abstract: We propose a theoretically and practically improved density-based, hierarchical clustering method, providing a clustering hierarchy from which a simplified tree of significant clusters can be constructed For obtaining a “flat” partition consisting of only the most significant clusters (possibly corresponding to different density thresholds), we propose a novel cluster stability measure, formalize the problem of maximizing the overall stability of selected clusters, and formulate an algorithm that computes an optimal solution to this problem We demonstrate that our approach outperforms the current, state-of-the-art, density-based clustering methods on a wide variety of real world data

1,132 citations

Journal ArticleDOI
01 May 2005-Ecology
TL;DR: In this article, the authors investigated whether the observed trophic cascade might have a behavioral basis by exploring environmental factors influencing the movements of 13 female elk equipped with GPS radio collars and found that elk movements were influenced by multiple factors, such as the distance from roads, the presence of a steep slope along the step, and the cover type in which they ended.
Abstract: A trophic cascade recently has been reported among wolves, elk, and aspen on the northern winter range of Yellowstone National Park, Wyoming, USA, but the mechanisms of indirect interactions within this food chain have yet to be established. We investigated whether the observed trophic cascade might have a behavioral basis by exploring environmental factors influencing the movements of 13 female elk equipped with GPS radio collars. We developed a simple statistical approach that can unveil the concurrent influence of several environmental features on animal movements. Paths of elk traveling on their winter range were broken down into steps, which correspond to the straight-line segment between successive locations at 5-hour intervals. Each observed step was paired with 200 random steps having the same starting point, but differing in length and/or direction. Comparisons between the characteristics of observed and random steps using conditional logistic regression were used to model environmental features influencing movement patterns. We found that elk movements were influenced by multiple factors, such as the distance from roads, the presence of a steep slope along the step, and the cover type in which they ended. The influence of cover type on elk movements depended on the spatial distribution of wolves across the northern winter range of the park. In low wolf-use areas, the relative preference for end point locations of steps followed: aspen stands > open areas > conifer forests. As the risks of wolf encounter increased, the preference of elk for aspen stands gradually decreased, and selection became strongest for steps ending in conifer forests in high wolf-use areas. Our study clarifies the behavioral mechanisms involved in the trophic cascade of Yellowstone's wolf-elk-aspen system: elk respond to wolves on their winter range by a shift in habitat selection, which leads to local reductions in the use of aspen by elk.

1,132 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations

Journal ArticleDOI
TL;DR: Axonal regeneration may be facilitated by new strategies that enhance the growth potential of neurons and optimize the growth support of the distal nerve stump in combination with prompt nerve repair.
Abstract: Functional recovery from peripheral nerve injury and repair depends on a multitude of factors, both intrinsic and extrinsic to neurons. Neuronal survival after axotomy is a prerequisite for regeneration and is facilitated by an array of trophic factors from multiple sources, including neurotrophins, neuropoietic cytokines, insulin-like growth factors (IGFs), and glial-cell-line-derived neurotrophic factors (GDNFs). Axotomized neurons must switch from a transmitting mode to a growth mode and express growth-associated proteins, such as GAP-43, tubulin, and actin, as well as an array of novel neuropeptides and cytokines, all of which have the potential to promote axonal regeneration. Axonal sprouts must reach the distal nerve stump at a time when its growth support is optimal. Schwann cells in the distal stump undergo proliferation and phenotypical changes to prepare the local environment to be favorable for axonal regeneration. Schwann cells play an indispensable role in promoting regeneration by increasing their synthesis of surface cell adhesion molecules (CAMs), such as N-CAM, Ng-CAM/L1, N-cadherin, and L2/HNK-1, by elaborating basement membrane that contains many extracellular matrix proteins, such as laminin, fibronectin, and tenascin, and by producing many neurotrophic factors and their receptors. However, the growth support provided by the distal nerve stump and the capacity of the axotomized neurons to regenerate axons may not be sustained indefinitely. Axonal regenerations may be facilitated by new strategies that enhance the growth potential of neurons and optimize the growth support of the distal nerve stump in combination with prompt nerve repair.

1,126 citations


Authors

Showing all 66027 results

NameH-indexPapersCitations
Salim Yusuf2311439252912
Yi Chen2174342293080
Robert M. Califf1961561167961
Douglas R. Green182661145944
Russel J. Reiter1691646121010
Jiawei Han1681233143427
Jaakko Kaprio1631532126320
Tobin J. Marks1591621111604
Josef M. Penninger154700107295
Subir Sarkar1491542144614
Gerald M. Edelman14754569091
Rinaldo Bellomo1471714120052
P. Sinervo138151699215
David A. Jackson136109568352
Andreas Warburton135157897496
Network Information
Related Institutions (5)
University of British Columbia
209.6K papers, 9.2M citations

99% related

University of Toronto
294.9K papers, 13.5M citations

98% related

University of Minnesota
257.9K papers, 11.9M citations

95% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

94% related

Cornell University
235.5K papers, 12.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023234
20221,084
20219,315
20208,831
20198,177