scispace - formally typeset
Search or ask a question
Institution

University of Alcalá

EducationAlcalá de Henares, Spain
About: University of Alcalá is a education organization based out in Alcalá de Henares, Spain. It is known for research contribution in the topics: Population & Receptor. The organization has 10795 authors who have published 20718 publications receiving 410089 citations. The organization is also known as: University of Alcala & University of Alcala de Henares.


Papers
More filters
Journal ArticleDOI
TL;DR: The enhanced surface density of GFAP immunoreactive material in the hippocampus and globus pallidus suggest a possible influence of estradiol on GFAP-immunoreactive glial processes.

96 citations

Journal ArticleDOI
TL;DR: The overall system includes a complete user–machine interface, motor control modules and safety and autonomous guidance systems that are adaptable to the particular needs of each user according to the type and degree of handicap involved.

96 citations

Journal ArticleDOI
TL;DR: This paper presents a complete theoretical analysis of the rationality and unirationality of generalized offsets and characterizations for deciding whether the generalized offset to a hypersurface is parametric or it has two parametric components.

96 citations

Journal ArticleDOI
TL;DR: New PCR markers that amplify the complete coding sequence of the specific alleles of the high molecular weight (HMW) glutenin genes and the cloning and characterisation of the nucleotide sequence of this allele are reported.
Abstract: The present work reports new PCR markers that amplify the complete coding sequence of the specific alleles of the high molecular weight (HMW) glutenin genes. A set of AS-PCR molecular markers was designed which use primers from nucleotide sequences of the Glu-A1 and Glu-D1 genes, making use of the minor diffeences between the sequences of the x1, x2* of Glu-A1, and the x5 and y10 of Glu-D1. These primers were able to distinguish between x2* and the x1 or xNull of Glu-A1. Also x5 was distinguishable from x2, and y10 from y12. The primers amplified the complete coding regions and corresponded to the upstream and downstream flanking positions of Glu-A1 and Glu-D1. Primers designed to amplify the Glu-A1 gene amplified a single product when used with genomic DNA of common wheats and the xNull allele of this gene. This work also describes the cloning and characterisation of the nucleotide sequence of this allele. It possesses the same general structure as x2* and x1 (previously determined) and differs from these alleles in the extension of the coding sequence for a presumptive mature protein with only 384 residues. This is due to the presence of a stop codon (TAA) 1215-bp downstream from the start codon. A further stop codon (TAG), 2280-bp downstream from the starting codon is also found. The open reading frame of xNull and x1 alleles has the same size in bp. Both are larger than x2* which shows two small deletions. The reduced size of the presumptive mature protein encoded by xNull could explain the negative effect of this allele on grain quality.

96 citations

Journal ArticleDOI
TL;DR: The catalytic activity expressed by turnover number (TON) and turnover frequency (TOF) in different fields of catalysis (enzymatic, homogeneous (single site), heterogeneous (multi-site), and nanocatalysis (oligo site)) are usually estimated in slightly different ways and with slightly different meanings as discussed by the authors.
Abstract: The catalytic activity expressed by turnover number (TON) and turnover frequency (TOF) in different fields of catalysis (enzymatic, homogeneous (single‐site), heterogeneous (multi‐site), and nanocatalysis (oligo‐site)) are usually estimated in slightly different ways and with slightly different, yet important meanings. For soluble metal nanoparticles, the ideal is to determine the TON by using the titrated number of active catalytic sites before the catalyst is inactivated. However, in the absence of reliable titration methods it is suggested that TON figures should always be reported as the number of moles of reactants consumed per mol of soluble metal catalyst, and that they should also be corrected by the number of exposed surface atoms by using the metal atom’s magic number approach. Moreover, it is strongly recommended that the TOF should be determined from the slope of plots of turnover numbers versus time, because in various cases the size and shape of the soluble nanoparticles might change dramatically during the reaction. As in organometallic catalysis, in the absence of TON vs. time data, the TOF should be estimated for low substrate conversions.

96 citations


Authors

Showing all 10907 results

NameH-indexPapersCitations
José Luis Zamorano105695133396
Jesús F. San Miguel9752744918
Sebastián F. Sánchez9662932496
Javier P. Gisbert9599033726
Luis M. Ruilope9484197778
Luis M. Garcia-Segura8848427077
Alberto Orfao8559737670
Amadeo R. Fernández-Alba8331821458
Rafael Luque8069328395
Francisco Rodríguez7974824992
Andrea Negri7924235311
Rafael Cantón7857529702
David J. Grignon7830123119
Christophe Baudouin7455322068
Josep M. Argilés7331019675
Network Information
Related Institutions (5)
Complutense University of Madrid
90.2K papers, 2.1M citations

95% related

University of Valencia
65.6K papers, 1.7M citations

94% related

Autonomous University of Barcelona
80.5K papers, 2.3M citations

94% related

University of Barcelona
108.5K papers, 3.7M citations

93% related

University of Florence
79.5K papers, 2.3M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20251
20243
202375
2022166
20211,660
20201,532