scispace - formally typeset
Search or ask a question
Institution

University of Antwerp

EducationAntwerp, Belgium
About: University of Antwerp is a education organization based out in Antwerp, Belgium. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 16682 authors who have published 48837 publications receiving 1689748 citations. The organization is also known as: Universiteit Antwerpen & UAntwerp.


Papers
More filters
Journal ArticleDOI
TL;DR: The considerable differences in clinical and pathological presentation of patients with MAPT mutations are described and the effect of the different mutations on tau functioning is summarized, together with the genetic evidence for additional causal genes for tau‐positive as well as tau-negative dementia.
Abstract: Tau is a multifunctional protein that was originally identified as a microtubule-associated protein. In patients diagnosed with frontotemporal dementia and parkinsonism linked to chromosome 17, mutations in the gene encoding tau (MAPT) have been identified that disrupt the normal binding of tau to tubulin resulting in pathological deposits of hyperphosphorylated tau. Abnormal filamentous tau deposits have been reported as a pathological characteristic in several other neurodegenerative diseases, including frontotemporal dementia, Pick Disease, Alzheimer disease, argyrophilic grain disease, progressive supranuclear palsy, and corticobasal degeneration. In the last five years, extensive research has identified 34 different pathogenic MAPT mutations in 101 families worldwide. In vitro, cell-free and transfected cell studies have provided valuable information on tau dysfunction and transgenic mice carrying human MAPT mutations are being generated to study the influence of MAPT mutations in vivo. This mutation update describes the considerable differences in clinical and pathological presentation of patients with MAPT mutations and summarizes the effect of the different mutations on tau functioning. In addition, the role of tau as a genetic susceptibility factor is discussed, together with the genetic evidence for additional causal genes for tau-positive as well as tau-negative dementia.

325 citations

Journal ArticleDOI
20 Nov 1997-Nature
TL;DR: In this article, the magnetization of individual superconducting discs of diameters down to 100nm was studied and it was shown that the superconding state of these discs is qualitatively different from both macroscopic and microscopic superconductors.
Abstract: The properties of a superconductor are expected to change radically when its size becomes comparable to that of the Cooper pairs, the quasiparticles responsible for superconductivity. The effect of such confinement is well understood for the case of thesuppression of superconductivity by magnetic fields (which gives rise to so-called Little–Parks oscillations of the phase boundary)1,2,3,4. But little is known about what happens in small superconductors in the zero-resistance state, which cannot be probed by resistance measurements. Here we apply a new technique of ballistic Hall magnetometry5 to study the magnetization of individual superconducting discs of diameters down to 100 nm. The superconducting state of these discs is found to be qualitatively different from both macroscopic and microscopic6 superconductors, with numerous phase transitions whose character changes rapidly with size and temperature. This exotic behaviour is due to size quantization of the Cooper-pair motion and resulting transitions between discrete states of the superconducting Bose condensate in a magnetic field.

324 citations

Journal ArticleDOI
TL;DR: Data from the infrapatellar fat pad study are consistent with the hypothesis that the IPFP is an osteoarthritic joint tissue capable of modulating inflammatory and destructive responses in knee-OA.

324 citations

Journal ArticleDOI
TL;DR: It is speculated that stress-induced modulation of plant growth is mediated by a plethora of molecular interactions, whereby different environmental signals can trigger similar morphogenic responses, and can be viewed in terms of a thermodynamic model.
Abstract: Exposure of plants to mild chronic stress can cause induction of specific, stress-induced morphogenic responses (SIMRs). These responses are characterized by a blockage of cell division in the main meristematic tissues, an inhibition of elongation and a redirected outgrowth of lateral organs. Key elements in the ontogenesis of this phenotype appear to be stress-affected gradients of reactive oxygen species (ROS), antioxidants, auxin and ethylene. These gradients are present at the the organismal level, but are integrated on the cellular level, affecting cell division, cell elongation and/or cell differentiation. Our analysis of the literature indicates that stress-induced modulation of plant growth is mediated by a plethora of molecular interactions, whereby different environmental signals can trigger similar morphogenic responses. At least some of the molecular interactions that underlie morphogenic responses appear to be interchangeable. We speculate that this complexity can be viewed in terms of a thermodynamic model, in which not the specific pathway, but the achieved metabolic state is biologically conserved.

324 citations

Journal ArticleDOI
TL;DR: Spectra of evolutionary rates were calculated for each rRNA and show the fastest evolving sites substituting at rates more than 1000 times that of the slowest ones.
Abstract: A recently developed method for estimating the variability of nucleotide sites in a sequence alignment [Van de Peer, Y., Van der Auwera, G. and De Wachter, R. (1996) J. Mol. Evol. 42, 201-210] was applied to bacterial 16S, 5S and 23S rRNAs. In this method, the variability of each nucleotide site is defined as its evolutionary rate relative to the average evolutionary rate of all the nucleotide sites of the molecule. Spectra of evolutionary rates were calculated for each rRNA and show the fastest evolving sites substituting at rates more than 1000 times that of the slowest ones. Variability maps are presented for each rRNA, consisting of secondary structure models where the variability of each nucleotide site is indicated by means of a colored dot. The maps can be interpreted in terms of higher order structure, function and evolution of the molecules and facilitate the selection of areas suitable for the design of PCR primers and hybridization probes. Variability measurement is also important for the precise estimation of evolutionary distances and the inference of phylogenetic trees.

323 citations


Authors

Showing all 16957 results

NameH-indexPapersCitations
Cornelia M. van Duijn1831030146009
John Hardy1771178171694
Mark Gerstein168751149578
Hannes Jung1592069125069
Rui Zhang1512625107917
Dirk Inzé14964774468
Walter Paulus14980986252
Robin Erbacher1381721100252
Rupert Leitner136120190597
Alison Goate13672185846
Andrea Giammanco135136298093
Maria Spiropulu135145596674
Peter Robmann135143897569
Michael Tytgat134144994133
Matthew Herndon133173297466
Network Information
Related Institutions (5)
Utrecht University
139.3K papers, 6.2M citations

95% related

Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

95% related

University of Amsterdam
140.8K papers, 5.9M citations

95% related

University of Helsinki
113.1K papers, 4.6M citations

94% related

University of British Columbia
209.6K papers, 9.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023137
2022460
20213,656
20203,332
20192,982
20182,844