scispace - formally typeset
Search or ask a question
Institution

University of Arizona

EducationTucson, Arizona, United States
About: University of Arizona is a education organization based out in Tucson, Arizona, United States. It is known for research contribution in the topics: Population & Galaxy. The organization has 63805 authors who have published 155998 publications receiving 6854915 citations. The organization is also known as: UA & U of A.
Topics: Population, Galaxy, Star formation, Redshift, Planet


Papers
More filters
Journal ArticleDOI
TL;DR: This first report of the whole genome sequence of A. cerana provides resources for comparative sociogenomics, especially in the field of social insect communication, to contribute to a better understanding of the complex behaviors and natural biology of the Asian honey bee and to anticipate its future evolutionary trajectory.
Abstract: The honey bee is an important model system for increasing understanding of molecular and neural mechanisms underlying social behaviors relevant to the agricultural industry and basic science. The western honey bee, Apis mellifera, has served as a model species, and its genome sequence has been published. In contrast, the genome of the Asian honey bee, Apis cerana, has not yet been sequenced. A. cerana has been raised in Asian countries for thousands of years and has brought considerable economic benefits to the apicultural industry. A cerana has divergent biological traits compared to A. mellifera and it has played a key role in maintaining biodiversity in eastern and southern Asia. Here we report the first whole genome sequence of A. cerana. Using de novo assembly methods, we produced a 238 Mbp draft of the A. cerana genome and generated 10,651 genes. A.cerana-specific genes were analyzed to better understand the novel characteristics of this honey bee species. Seventy-two percent of the A. cerana-specific genes had more than one GO term, and 1,696 enzymes were categorized into 125 pathways. Genes involved in chemoreception and immunity were carefully identified and compared to those from other sequenced insect models. These included 10 gustatory receptors, 119 odorant receptors, 10 ionotropic receptors, and 160 immune-related genes. This first report of the whole genome sequence of A. cerana provides resources for comparative sociogenomics, especially in the field of social insect communication. These important tools will contribute to a better understanding of the complex behaviors and natural biology of the Asian honey bee and to anticipate its future evolutionary trajectory.

895 citations

Journal ArticleDOI
TL;DR: There is a need to develop and test effective treatments for specific subgroups such as older women with substance use disorders, as well as those with co-occurring substance use and psychiatric disorders such as eating disorders, and some greater effectiveness has been demonstrated by treatments that address problems more common to substance-abusing women.

895 citations

Journal ArticleDOI
TL;DR: Evidence for "top-down" modulatory circuits that profoundly change the sensory experience of pain is reviewed.
Abstract: It has long been appreciated that the experience of pain is highly variable between individuals. Pain results from activation of sensory receptors specialized to detect actual or impending tissue damage (i.e., nociceptors). However, a direct correlation between activation of nociceptors and the sensory experience of pain is not always apparent. Even in cases in which the severity of injury appears similar, individual pain experiences may vary dramatically. Emotional state, degree of anxiety, attention and distraction, past experiences, memories, and many other factors can either enhance or diminish the pain experience. Here, we review evidence for "top-down" modulatory circuits that profoundly change the sensory experience of pain.

895 citations

Journal ArticleDOI
24 Nov 2011-Nature
TL;DR: The Tetranychus urticae genome is the smallest known arthropod genome as discussed by the authors, which represents the first complete chelicerate genome for a pest and has been annotated with genes associated with feeding on different hosts.
Abstract: The spider mite Tetranychus urticae is a cosmopolitan agricultural pest with an extensive host plant range and an extreme record of pesticide resistance. Here we present the completely sequenced and annotated spider mite genome, representing the first complete chelicerate genome. At 90 megabases T. urticae has the smallest sequenced arthropod genome. Compared with other arthropods, the spider mite genome shows unique changes in the hormonal environment and organization of the Hox complex, and also reveals evolutionary innovation of silk production. We find strong signatures of polyphagy and detoxification in gene families associated with feeding on different hosts and in new gene families acquired by lateral gene transfer. Deep transcriptome analysis of mites feeding on different plants shows how this pest responds to a changing host environment. The T. urticae genome thus offers new insights into arthropod evolution and plant-herbivore interactions, and provides unique opportunities for developing novel plant protection strategies.

894 citations

Journal ArticleDOI
04 Sep 2008-Nature
TL;DR: Observations at a wavelength of 1.3 mm set a size of microarcseconds on the intrinsic diameter of Sagittarius A*, suggesting that the bulk of Sgr A* emission may not be centred on the black hole, but arises in the surrounding accretion flow.
Abstract: Using Very Long Baseline Interferometry (VLBI) at the relatively short radio wavelength of 13 mm, a new intrinsic size estimate has been obtained for Sagittarius A*, the supermassive black hole candidate at the centre of the Milky Way The resulting lower limit on the size of Sgr A* is less than the predicted size of the event horizon of the presumed black hole, suggesting that Sgr A* emissions centre not on the black hole itself but on the surrounding accretion flow VLBI observations of the Galactic Centre at around 13 mm, less influenced by interstellar scattering than those made at longer wavelengths, open a new window onto black-hole physics that will become even more sensitive as new VLBI stations are built The cores of most large galaxies are thought to harbour super massive black holes Sagittarius A*, the compact source of radio, infrared and x-ray emission at the centre of the Milky Way, is the closest example of this phenomenon This paper reports observations that set a limit less than the expected apparent size of the event horizon of the presumed black hole, suggesting that the bulk of Sgr A* emission may not be centred on the black hole, but arises in the surrounding accretion flow The cores of most galaxies are thought to harbour supermassive black holes, which power galactic nuclei by converting the gravitational energy of accreting matter into radiation1 Sagittarius A* (Sgr A*), the compact source of radio, infrared and X-ray emission at the centre of the Milky Way, is the closest example of this phenomenon, with an estimated black hole mass that is 4,000,000 times that of the Sun2,3 A long-standing astronomical goal is to resolve structures in the innermost accretion flow surrounding Sgr A*, where strong gravitational fields will distort the appearance of radiation emitted near the black hole Radio observations at wavelengths of 35 mm and 7 mm have detected intrinsic structure in Sgr A*, but the spatial resolution of observations at these wavelengths is limited by interstellar scattering4,5,6,7 Here we report observations at a wavelength of 13 mm that set a size of microarcseconds on the intrinsic diameter of Sgr A* This is less than the expected apparent size of the event horizon of the presumed black hole, suggesting that the bulk of Sgr A* emission may not be centred on the black hole, but arises in the surrounding accretion flow

893 citations


Authors

Showing all 64388 results

NameH-indexPapersCitations
Simon D. M. White189795231645
Julie E. Buring186950132967
David H. Weinberg183700171424
Richard Peto183683231434
Xiaohui Fan183878168522
Dennis S. Charney179802122408
Daniel J. Eisenstein179672151720
David Haussler172488224960
Carlos S. Frenk165799140345
Jian-Kang Zhu161550105551
Tobin J. Marks1591621111604
Todd Adams1541866143110
Jane A. Cauley15191499933
Wei Zheng1511929120209
Daniel L. Schacter14959290148
Network Information
Related Institutions (5)
University of California, San Diego
204.5K papers, 12.3M citations

91% related

Cornell University
235.5K papers, 12.2M citations

90% related

University of Washington
305.5K papers, 17.7M citations

90% related

University of Michigan
342.3K papers, 17.6M citations

90% related

Harvard University
530.3K papers, 38.1M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023205
2022987
20217,005
20207,325
20196,716
20186,375